-
Notifications
You must be signed in to change notification settings - Fork 542
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Felipe Mello <fmellomascarenhas@gmail.com> Co-authored-by: ebsmothers <ebs@meta.com> Co-authored-by: salman <salman.mohammadi@outlook.com>
- Loading branch information
1 parent
952078e
commit cf0142b
Showing
21 changed files
with
2,425 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
# Config for multi-node GRPO in dev/grpo_full_finetune_distributed.py | ||
# using a Llama3.2 3B Base model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Llama-3.2-3B --output-dir /tmp/Llama-3.2-3B --ignore-patterns "original/consolidated.00.pth" | ||
# | ||
# It can be beneficial to first train the base model with SFT using the 3B_sft recipe. | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nproc_per_node 4 dev/grpo_full_finetune_distributed --config dev/3B_full_grpo | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 4 dev/grpo_full_finetune_distributed --config dev/grpo/3B_full_rl checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# | ||
# Furthermore, you can launch it on multiple nodes by going to recipes/dev/ and using | ||
# sbatch multinode_grpo.sbatch | ||
|
||
name: grpo_llama3b | ||
|
||
output_dir: /tmp/checkpoints/${name} | ||
base_model_path: /tmp/llama3B_gsm8k_sft_part0/epoch_0 # Use this to train from the slightly trained SFT model | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Llama-3.2-3B/original/tokenizer.model | ||
max_seq_len: null | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.dev.grpo.gsm8k.gsm8k_dataset | ||
partition: 1-9/10 | ||
seed: null | ||
shuffle: False | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3_2.llama3_2_3b | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: ${base_model_path} | ||
checkpoint_files: [ | ||
model-00001-of-00002.safetensors, | ||
model-00002-of-00002.safetensors, | ||
] | ||
recipe_checkpoint: null | ||
output_dir: ${output_dir} | ||
model_type: LLAMA3 | ||
|
||
|
||
ref_checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: ${base_model_path} | ||
checkpoint_files: [ | ||
model-00001-of-00002.safetensors, | ||
model-00002-of-00002.safetensors, | ||
] | ||
recipe_checkpoint: null | ||
output_dir: ${output_dir}/ref # shouldn't be used? | ||
model_type: LLAMA3 | ||
|
||
|
||
resume_from_checkpoint: False | ||
save_every_n_epochs: 1 | ||
|
||
# Fine-tuning arguments | ||
batch_size: 1 | ||
grpo_samples: 16 | ||
forward_batch_size: 1 | ||
max_generated_tokens: 512 | ||
top_k: null | ||
temperature: 1.0 | ||
|
||
ppo_epochs: 1 | ||
|
||
num_steps: 200 | ||
|
||
clip_grad_norm: 1.0 | ||
|
||
epochs: 10 | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
lr: 1e-5 | ||
fused: True | ||
lr_scheduler: | ||
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 50 | ||
loss: | ||
_component_: torchtune.dev.grpo.loss.GRPOSimpleLoss | ||
kl_coeff: 0.01 | ||
epsilon: 0.2 | ||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True # True reduces memory | ||
compile: False # pytorch compile, set to true for better perf/memory | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir}/logs | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
# Profiler (disabled) | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
enabled: True | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: True | ||
with_stack: True | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 3 | ||
active_steps: 2 | ||
num_cycles: 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
# Config for multi-device SFT for reasoning in full_finetune_distributed.py | ||
# using a Llama3.2 3B Base model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Meta-Llama-3.2-3B --output-dir /tmp/Meta-Llama-3.2-3B-Instruct --ignore-patterns "original/consolidated.00.pth" | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nproc_per_node 4 full_finetune_distributed --config dev/3B_grpo_sft | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 4 full_finetune_distributed --config dev/grpo/3B_sft checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
|
||
|
||
name: llama3B_gsm8k_sft_part0 | ||
|
||
output_dir: /tmp/${name} | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: /tmp/Llama-3.2-3B/original/tokenizer.model | ||
max_seq_len: null | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.dev.grpo.gsm8k.gsm8k_sft | ||
partition: 0-0/10 | ||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3_2.llama3_2_3b | ||
|
||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-3.2-3B/ | ||
checkpoint_files: [ | ||
model-00001-of-00002.safetensors, | ||
model-00002-of-00002.safetensors, | ||
] | ||
recipe_checkpoint: null | ||
output_dir: ${output_dir} | ||
model_type: LLAMA3 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 2 | ||
epochs: 1 | ||
|
||
optimizer: | ||
_component_: torch.optim.AdamW | ||
lr: 1e-5 | ||
fused: True | ||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
max_steps_per_epoch: null | ||
clip_grad_norm: null | ||
compile: False # torch.compile the model + loss, True increases speed + decreases memory | ||
optimizer_in_bwd: False # True saves memory. Requires gradient_accumulation_steps=1 | ||
gradient_accumulation_steps: 1 # Use to increase effective batch size | ||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True # True reduces memory | ||
enable_activation_offloading: False # True reduces memory | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: ${output_dir}/logs | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True | ||
|
||
|
||
# Profiler (disabled) | ||
profiler: | ||
_component_: torchtune.training.setup_torch_profiler | ||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 3 | ||
active_steps: 2 | ||
num_cycles: 1 |
Oops, something went wrong.