Skip to content

Commit

Permalink
[fbsync] allow nn.ModuleList in RandomApply (#7197)
Browse files Browse the repository at this point in the history
Reviewed By: vmoens

Differential Revision: D44416259

fbshipit-source-id: cbd7c731f37f13b3bdb4d117225910fa019eac60
  • Loading branch information
NicolasHug authored and facebook-github-bot committed Mar 28, 2023
1 parent 3dec394 commit 0afc675
Show file tree
Hide file tree
Showing 2 changed files with 34 additions and 14 deletions.
24 changes: 15 additions & 9 deletions test/test_prototype_transforms_consistency.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
make_label,
make_segmentation_mask,
)
from torch import nn
from torchvision import transforms as legacy_transforms
from torchvision._utils import sequence_to_str
from torchvision.prototype import datapoints, transforms as prototype_transforms
Expand Down Expand Up @@ -761,19 +762,24 @@ def test_compose(self):
check_call_consistency(prototype_transform, legacy_transform)

@pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
def test_random_apply(self, p):
@pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
def test_random_apply(self, p, sequence_type):
prototype_transform = prototype_transforms.RandomApply(
[
prototype_transforms.Resize(256),
prototype_transforms.CenterCrop(224),
],
sequence_type(
[
prototype_transforms.Resize(256),
prototype_transforms.CenterCrop(224),
]
),
p=p,
)
legacy_transform = legacy_transforms.RandomApply(
[
legacy_transforms.Resize(256),
legacy_transforms.CenterCrop(224),
],
sequence_type(
[
legacy_transforms.Resize(256),
legacy_transforms.CenterCrop(224),
]
),
p=p,
)

Expand Down
24 changes: 19 additions & 5 deletions torchvision/prototype/transforms/_container.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
import warnings
from typing import Any, Callable, List, Optional, Sequence
from typing import Any, Callable, List, Optional, Sequence, Union

import torch

from torch import nn
from torchvision.prototype.transforms import Transform


Expand All @@ -25,9 +27,13 @@ def extra_repr(self) -> str:
return "\n".join(format_string)


class RandomApply(Compose):
def __init__(self, transforms: Sequence[Callable], p: float = 0.5) -> None:
super().__init__(transforms)
class RandomApply(Transform):
def __init__(self, transforms: Union[Sequence[Callable], nn.ModuleList], p: float = 0.5) -> None:
super().__init__()

if not isinstance(transforms, (Sequence, nn.ModuleList)):
raise TypeError("Argument transforms should be a sequence of callables or a `nn.ModuleList`")
self.transforms = transforms

if not (0.0 <= p <= 1.0):
raise ValueError("`p` should be a floating point value in the interval [0.0, 1.0].")
Expand All @@ -39,7 +45,15 @@ def forward(self, *inputs: Any) -> Any:
if torch.rand(1) >= self.p:
return sample

return super().forward(sample)
for transform in self.transforms:
sample = transform(sample)
return sample

def extra_repr(self) -> str:
format_string = []
for t in self.transforms:
format_string.append(f" {t}")
return "\n".join(format_string)


class RandomChoice(Transform):
Expand Down

0 comments on commit 0afc675

Please sign in to comment.