Skip to content

Commit

Permalink
Add transforms and presets for optical flow models (#5026)
Browse files Browse the repository at this point in the history
  • Loading branch information
NicolasHug authored Dec 7, 2021
1 parent 4dd8b5c commit 47ae092
Show file tree
Hide file tree
Showing 2 changed files with 325 additions and 0 deletions.
64 changes: 64 additions & 0 deletions references/optical_flow/presets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
import torch
import transforms as T


class OpticalFlowPresetEval(torch.nn.Module):
def __init__(self):
super().__init__()

self.transforms = T.Compose(
[
T.PILToTensor(),
T.ConvertImageDtype(torch.float32),
T.Normalize(mean=0.5, std=0.5), # map [0, 1] into [-1, 1]
T.ValidateModelInput(),
]
)

def forward(self, img1, img2, flow, valid):
return self.transforms(img1, img2, flow, valid)


class OpticalFlowPresetTrain(torch.nn.Module):
def __init__(
self,
# RandomResizeAndCrop params
crop_size,
min_scale=-0.2,
max_scale=0.5,
stretch_prob=0.8,
# AsymmetricColorJitter params
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.5 / 3.14,
# Random[H,V]Flip params
asymmetric_jitter_prob=0.2,
do_flip=True,
):
super().__init__()

transforms = [
T.PILToTensor(),
T.AsymmetricColorJitter(
brightness=brightness, contrast=contrast, saturation=saturation, hue=hue, p=asymmetric_jitter_prob
),
T.RandomResizeAndCrop(
crop_size=crop_size, min_scale=min_scale, max_scale=max_scale, stretch_prob=stretch_prob
),
]

if do_flip:
transforms += [T.RandomHorizontalFlip(p=0.5), T.RandomVerticalFlip(p=0.1)]

transforms += [
T.ConvertImageDtype(torch.float32),
T.Normalize(mean=0.5, std=0.5), # map [0, 1] into [-1, 1]
T.RandomErasing(max_erase=2),
T.MakeValidFlowMask(),
T.ValidateModelInput(),
]
self.transforms = T.Compose(transforms)

def forward(self, img1, img2, flow, valid):
return self.transforms(img1, img2, flow, valid)
261 changes: 261 additions & 0 deletions references/optical_flow/transforms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,261 @@
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F


class ValidateModelInput(torch.nn.Module):
# Pass-through transform that checks the shape and dtypes to make sure the model gets what it expects
def forward(self, img1, img2, flow, valid_flow_mask):

assert all(isinstance(arg, torch.Tensor) for arg in (img1, img2, flow, valid_flow_mask) if arg is not None)
assert all(arg.dtype == torch.float32 for arg in (img1, img2, flow) if arg is not None)

assert img1.shape == img2.shape
h, w = img1.shape[-2:]
if flow is not None:
assert flow.shape == (2, h, w)
if valid_flow_mask is not None:
assert valid_flow_mask.shape == (h, w)
assert valid_flow_mask.dtype == torch.bool

return img1, img2, flow, valid_flow_mask


class MakeValidFlowMask(torch.nn.Module):
# This transform generates a valid_flow_mask if it doesn't exist.
# The flow is considered valid if ||flow||_inf < threshold
# This is a noop for Kitti and HD1K which already come with a built-in flow mask.
def __init__(self, threshold=1000):
super().__init__()
self.threshold = threshold

def forward(self, img1, img2, flow, valid_flow_mask):
if flow is not None and valid_flow_mask is None:
valid_flow_mask = (flow.abs() < self.threshold).all(axis=0)
return img1, img2, flow, valid_flow_mask


class ConvertImageDtype(torch.nn.Module):
def __init__(self, dtype):
super().__init__()
self.dtype = dtype

def forward(self, img1, img2, flow, valid_flow_mask):
img1 = F.convert_image_dtype(img1, dtype=self.dtype)
img2 = F.convert_image_dtype(img2, dtype=self.dtype)

img1 = img1.contiguous()
img2 = img2.contiguous()

return img1, img2, flow, valid_flow_mask


class Normalize(torch.nn.Module):
def __init__(self, mean, std):
super().__init__()
self.mean = mean
self.std = std

def forward(self, img1, img2, flow, valid_flow_mask):
img1 = F.normalize(img1, mean=self.mean, std=self.std)
img2 = F.normalize(img2, mean=self.mean, std=self.std)

return img1, img2, flow, valid_flow_mask


class PILToTensor(torch.nn.Module):
# Converts all inputs to tensors
# Technically the flow and the valid mask are numpy arrays, not PIL images, but we keep that naming
# for consistency with the rest, e.g. the segmentation reference.
def forward(self, img1, img2, flow, valid_flow_mask):
img1 = F.pil_to_tensor(img1)
img2 = F.pil_to_tensor(img2)
if flow is not None:
flow = torch.from_numpy(flow)
if valid_flow_mask is not None:
valid_flow_mask = torch.from_numpy(valid_flow_mask)

return img1, img2, flow, valid_flow_mask


class AsymmetricColorJitter(T.ColorJitter):
# p determines the proba of doing asymmertric vs symmetric color jittering
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, p=0.2):
super().__init__(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
self.p = p

def forward(self, img1, img2, flow, valid_flow_mask):

if torch.rand(1) < self.p:
# asymmetric: different transform for img1 and img2
img1 = super().forward(img1)
img2 = super().forward(img2)
else:
# symmetric: same transform for img1 and img2
batch = torch.stack([img1, img2])
batch = super().forward(batch)
img1, img2 = batch[0], batch[1]

return img1, img2, flow, valid_flow_mask


class RandomErasing(T.RandomErasing):
# This only erases img2, and with an extra max_erase param
# This max_erase is needed because in the RAFT training ref does:
# 0 erasing with .5 proba
# 1 erase with .25 proba
# 2 erase with .25 proba
# and there's no accurate way to achieve this otherwise.
def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False, max_erase=1):
super().__init__(p=p, scale=scale, ratio=ratio, value=value, inplace=inplace)
self.max_erase = max_erase
assert self.max_erase > 0

def forward(self, img1, img2, flow, valid_flow_mask):
if torch.rand(1) > self.p:
return img1, img2, flow, valid_flow_mask

for _ in range(torch.randint(self.max_erase, size=(1,)).item()):
x, y, h, w, v = self.get_params(img2, scale=self.scale, ratio=self.ratio, value=[self.value])
img2 = F.erase(img2, x, y, h, w, v, self.inplace)

return img1, img2, flow, valid_flow_mask


class RandomHorizontalFlip(T.RandomHorizontalFlip):
def forward(self, img1, img2, flow, valid_flow_mask):
if torch.rand(1) > self.p:
return img1, img2, flow, valid_flow_mask

img1 = F.hflip(img1)
img2 = F.hflip(img2)
flow = F.hflip(flow) * torch.tensor([-1, 1])[:, None, None]
if valid_flow_mask is not None:
valid_flow_mask = F.hflip(valid_flow_mask)
return img1, img2, flow, valid_flow_mask


class RandomVerticalFlip(T.RandomVerticalFlip):
def forward(self, img1, img2, flow, valid_flow_mask):
if torch.rand(1) > self.p:
return img1, img2, flow, valid_flow_mask

img1 = F.vflip(img1)
img2 = F.vflip(img2)
flow = F.vflip(flow) * torch.tensor([1, -1])[:, None, None]
if valid_flow_mask is not None:
valid_flow_mask = F.vflip(valid_flow_mask)
return img1, img2, flow, valid_flow_mask


class RandomResizeAndCrop(torch.nn.Module):
# This transform will resize the input with a given proba, and then crop it.
# These are the reversed operations of the built-in RandomResizedCrop,
# although the order of the operations doesn't matter too much: resizing a
# crop would give the same result as cropping a resized image, up to
# interpolation artifact at the borders of the output.
#
# The reason we don't rely on RandomResizedCrop is because of a significant
# difference in the parametrization of both transforms, in particular,
# because of the way the random parameters are sampled in both transforms,
# which leads to fairly different resuts (and different epe). For more details see
# https://github.com/pytorch/vision/pull/5026/files#r762932579
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, stretch_prob=0.8):
super().__init__()
self.crop_size = crop_size
self.min_scale = min_scale
self.max_scale = max_scale
self.stretch_prob = stretch_prob
self.resize_prob = 0.8
self.max_stretch = 0.2

def forward(self, img1, img2, flow, valid_flow_mask):
# randomly sample scale
h, w = img1.shape[-2:]
# Note: in original code, they use + 1 instead of + 8 for sparse datasets (e.g. Kitti)
# It shouldn't matter much
min_scale = max((self.crop_size[0] + 8) / h, (self.crop_size[1] + 8) / w)

scale = 2 ** torch.empty(1, dtype=torch.float32).uniform_(self.min_scale, self.max_scale).item()
scale_x = scale
scale_y = scale
if torch.rand(1) < self.stretch_prob:
scale_x *= 2 ** torch.empty(1, dtype=torch.float32).uniform_(-self.max_stretch, self.max_stretch).item()
scale_y *= 2 ** torch.empty(1, dtype=torch.float32).uniform_(-self.max_stretch, self.max_stretch).item()

scale_x = max(scale_x, min_scale)
scale_y = max(scale_y, min_scale)

new_h, new_w = round(h * scale_y), round(w * scale_x)

if torch.rand(1).item() < self.resize_prob:
# rescale the images
img1 = F.resize(img1, size=(new_h, new_w))
img2 = F.resize(img2, size=(new_h, new_w))
if valid_flow_mask is None:
flow = F.resize(flow, size=(new_h, new_w))
flow = flow * torch.tensor([scale_x, scale_y])[:, None, None]
else:
flow, valid_flow_mask = self._resize_sparse_flow(
flow, valid_flow_mask, scale_x=scale_x, scale_y=scale_y
)

# Note: For sparse datasets (Kitti), the original code uses a "margin"
# See e.g. https://github.com/princeton-vl/RAFT/blob/master/core/utils/augmentor.py#L220:L220
# We don't, not sure it matters much
y0 = torch.randint(0, img1.shape[1] - self.crop_size[0], size=(1,)).item()
x0 = torch.randint(0, img1.shape[2] - self.crop_size[1], size=(1,)).item()

img1 = F.crop(img1, y0, x0, self.crop_size[0], self.crop_size[1])
img2 = F.crop(img2, y0, x0, self.crop_size[0], self.crop_size[1])
flow = F.crop(flow, y0, x0, self.crop_size[0], self.crop_size[1])
if valid_flow_mask is not None:
valid_flow_mask = F.crop(valid_flow_mask, y0, x0, self.crop_size[0], self.crop_size[1])

return img1, img2, flow, valid_flow_mask

def _resize_sparse_flow(self, flow, valid_flow_mask, scale_x=1.0, scale_y=1.0):
# This resizes both the flow and the valid_flow_mask mask (which is assumed to be reasonably sparse)
# There are as-many non-zero values in the original flow as in the resized flow (up to OOB)
# So for example if scale_x = scale_y = 2, the sparsity of the output flow is multiplied by 4

h, w = flow.shape[-2:]

h_new = int(round(h * scale_y))
w_new = int(round(w * scale_x))
flow_new = torch.zeros(size=[2, h_new, w_new], dtype=flow.dtype)
valid_new = torch.zeros(size=[h_new, w_new], dtype=valid_flow_mask.dtype)

jj, ii = torch.meshgrid(torch.arange(w), torch.arange(h), indexing="xy")

ii_valid, jj_valid = ii[valid_flow_mask], jj[valid_flow_mask]

ii_valid_new = torch.round(ii_valid.to(float) * scale_y).to(torch.long)
jj_valid_new = torch.round(jj_valid.to(float) * scale_x).to(torch.long)

within_bounds_mask = (0 <= ii_valid_new) & (ii_valid_new < h_new) & (0 <= jj_valid_new) & (jj_valid_new < w_new)

ii_valid = ii_valid[within_bounds_mask]
jj_valid = jj_valid[within_bounds_mask]
ii_valid_new = ii_valid_new[within_bounds_mask]
jj_valid_new = jj_valid_new[within_bounds_mask]

valid_flow_new = flow[:, ii_valid, jj_valid]
valid_flow_new[0] *= scale_x
valid_flow_new[1] *= scale_y

flow_new[:, ii_valid_new, jj_valid_new] = valid_flow_new
valid_new[ii_valid_new, jj_valid_new] = 1

return flow_new, valid_new


class Compose(torch.nn.Module):
def __init__(self, transforms):
super().__init__()
self.transforms = transforms

def forward(self, img1, img2, flow, valid_flow_mask):
for t in self.transforms:
img1, img2, flow, valid_flow_mask = t(img1, img2, flow, valid_flow_mask)
return img1, img2, flow, valid_flow_mask

0 comments on commit 47ae092

Please sign in to comment.