Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add iNaturalist dataset #4123

Merged
merged 7 commits into from
Jul 1, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions docs/source/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,12 @@ ImageNet
.. note ::
This requires `scipy` to be installed

iNaturalist
~~~~~~~~~~~

.. autoclass:: INaturalist
:members: __getitem__, category_name

Kinetics-400
~~~~~~~~~~~~

Expand Down
38 changes: 38 additions & 0 deletions test/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -1755,5 +1755,43 @@ def test_images_download_preexisting(self):
pass


class INaturalistTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.INaturalist
FEATURE_TYPES = (PIL.Image.Image, (int, tuple))

ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
target_type=("kingdom", "full", "genus", ["kingdom", "phylum", "class", "order", "family", "genus", "full"]),
version=("2021_train",),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For the future, it would be good to also test for the other years, as they contain different code-paths in the initialization phase

)

def inject_fake_data(self, tmpdir, config):
categories = [
"00000_Akingdom_0phylum_Aclass_Aorder_Afamily_Agenus_Aspecies",
"00001_Akingdom_1phylum_Aclass_Border_Afamily_Bgenus_Aspecies",
"00002_Akingdom_2phylum_Cclass_Corder_Cfamily_Cgenus_Cspecies",
]

num_images_per_category = 3
for category in categories:
datasets_utils.create_image_folder(
root=os.path.join(tmpdir, config["version"]),
name=category,
file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
num_examples=num_images_per_category,
)

return num_images_per_category * len(categories)

def test_targets(self):
target_types = ["kingdom", "phylum", "class", "order", "family", "genus", "full"]

with self.create_dataset(target_type=target_types, version="2021_valid") as (dataset, _):
items = [d[1] for d in dataset]
for i, item in enumerate(items):
self.assertEqual(dataset.category_name("kingdom", item[0]), "Akingdom")
self.assertEqual(dataset.category_name("phylum", item[1]), f"{i // 3}phylum")
self.assertEqual(item[6], i // 3)


if __name__ == "__main__":
unittest.main()
3 changes: 2 additions & 1 deletion torchvision/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
from .ucf101 import UCF101
from .places365 import Places365
from .kitti import Kitti
from .inaturalist import INaturalist
dgenzel marked this conversation as resolved.
Show resolved Hide resolved

__all__ = ('LSUN', 'LSUNClass',
'ImageFolder', 'DatasetFolder', 'FakeData',
Expand All @@ -35,5 +36,5 @@
'VOCSegmentation', 'VOCDetection', 'Cityscapes', 'ImageNet',
'Caltech101', 'Caltech256', 'CelebA', 'WIDERFace', 'SBDataset',
'VisionDataset', 'USPS', 'Kinetics400', "Kinetics", 'HMDB51', 'UCF101',
'Places365', 'Kitti',
'Places365', 'Kitti', "INaturalist"
)
251 changes: 251 additions & 0 deletions torchvision/datasets/inaturalist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
from PIL import Image
import os
import os.path
from typing import Any, Callable, Dict, List, Optional, Union, Tuple

from .vision import VisionDataset
from .utils import download_and_extract_archive, verify_str_arg
dgenzel marked this conversation as resolved.
Show resolved Hide resolved

CATEGORIES_2021 = ["kingdom", "phylum", "class", "order", "family", "genus"]

DATASET_URLS = {
'2017': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2017/train_val_images.tar.gz',
'2018': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2018/train_val2018.tar.gz',
'2019': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2019/train_val2019.tar.gz',
'2021_train': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train.tar.gz',
'2021_train_mini': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train_mini.tar.gz',
'2021_valid': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2021/val.tar.gz',
}

DATASET_MD5 = {
'2017': '7c784ea5e424efaec655bd392f87301f',
'2018': 'b1c6952ce38f31868cc50ea72d066cc3',
'2019': 'c60a6e2962c9b8ccbd458d12c8582644',
'2021_train': '38a7bb733f7a09214d44293460ec0021',
'2021_train_mini': 'db6ed8330e634445efc8fec83ae81442',
'2021_valid': 'f6f6e0e242e3d4c9569ba56400938afc',
}


class INaturalist(VisionDataset):
"""`iNaturalist <https://github.com/visipedia/inat_comp>`_ Dataset.

Args:
root (string): Root directory of dataset where the image files are stored.
This class does not require/use annotation files.
version (string, optional): Which version of the dataset to download/use. One of
'2017', '2018', '2019', '2021_train', '2021_train_mini', '2021_valid'.
Default: `2021_train`.
target_type (string or list, optional): Type of target to use, for 2021 versions, one of:

- ``full``: the full category (species)
- ``kingdom``: e.g. "Animalia"
- ``phylum``: e.g. "Arthropoda"
- ``class``: e.g. "Insecta"
- ``order``: e.g. "Coleoptera"
- ``family``: e.g. "Cleridae"
- ``genus``: e.g. "Trichodes"

for 2017-2019 versions, one of:

- ``full``: the full (numeric) category
- ``super``: the super category, e.g. "Amphibians"

Can also be a list to output a tuple with all specified target types.
Defaults to ``full``.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""

def __init__(
self,
root: str,
version: str = "2021_train",
target_type: Union[List[str], str] = "full",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
self.version = verify_str_arg(version, "version", DATASET_URLS.keys())

super(INaturalist, self).__init__(os.path.join(root, version),
transform=transform,
target_transform=target_transform)

os.makedirs(root, exist_ok=True)
if download:
self.download()

if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')

self.all_categories: List[str] = []

# map: category type -> name of category -> index
self.categories_index: Dict[str, Dict[str, int]] = {}

# list indexed by category id, containing mapping from category type -> index
self.categories_map: List[Dict[str, int]] = []

if not isinstance(target_type, list):
target_type = [target_type]
if self.version[:4] == "2021":
self.target_type = [verify_str_arg(t, "target_type", ("full", *CATEGORIES_2021))
for t in target_type]
self._init_2021()
else:
self.target_type = [verify_str_arg(t, "target_type", ("full", "super"))
for t in target_type]
self._init_pre2021()

# index of all files: (full category id, filename)
self.index: List[Tuple[int, str]] = []

for dir_index, dir_name in enumerate(self.all_categories):
files = os.listdir(os.path.join(self.root, dir_name))
for fname in files:
self.index.append((dir_index, fname))

def _init_2021(self) -> None:
"""Initialize based on 2021 layout"""

self.all_categories = sorted(os.listdir(self.root))

# map: category type -> name of category -> index
self.categories_index = {
k: {} for k in CATEGORIES_2021
}

for dir_index, dir_name in enumerate(self.all_categories):
pieces = dir_name.split('_')
if len(pieces) != 8:
raise RuntimeError(f'Unexpected category name {dir_name}, wrong number of pieces')
if pieces[0] != f'{dir_index:05d}':
raise RuntimeError(f'Unexpected category id {pieces[0]}, expecting {dir_index:05d}')
cat_map = {}
for cat, name in zip(CATEGORIES_2021, pieces[1:7]):
if name in self.categories_index[cat]:
cat_id = self.categories_index[cat][name]
else:
cat_id = len(self.categories_index[cat])
self.categories_index[cat][name] = cat_id
cat_map[cat] = cat_id
self.categories_map.append(cat_map)

def _init_pre2021(self) -> None:
"""Initialize based on 2017-2019 layout"""

# map: category type -> name of category -> index
self.categories_index = {'super': {}}

cat_index = 0
super_categories = sorted(os.listdir(self.root))
for sindex, scat in enumerate(super_categories):
self.categories_index["super"][scat] = sindex
subcategories = sorted(os.listdir(os.path.join(self.root, scat)))
for subcat in subcategories:
if self.version == "2017":
# this version does not use ids as directory names
subcat_i = cat_index
cat_index += 1
else:
try:
subcat_i = int(subcat)
except ValueError:
raise RuntimeError(f"Unexpected non-numeric dir name: {subcat}")
if subcat_i >= len(self.categories_map):
old_len = len(self.categories_map)
self.categories_map.extend([{}] * (subcat_i - old_len + 1))
self.all_categories.extend([""] * (subcat_i - old_len + 1))
if self.categories_map[subcat_i]:
raise RuntimeError(f"Duplicate category {subcat}")
self.categories_map[subcat_i] = {'super': sindex}
self.all_categories[subcat_i] = os.path.join(scat, subcat)

# validate the dictionary
for cindex, c in enumerate(self.categories_map):
if not c:
raise RuntimeError(f"Missing category {cindex}")

def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index

Returns:
tuple: (image, target) where the type of target specified by target_type.
"""

cat_id, fname = self.index[index]
img = Image.open(os.path.join(self.root,
self.all_categories[cat_id],
fname))

target: Any = []
for t in self.target_type:
if t == "full":
target.append(cat_id)
else:
target.append(self.categories_map[cat_id][t])
fmassa marked this conversation as resolved.
Show resolved Hide resolved
target = tuple(target) if len(target) > 1 else target[0]

if self.transform is not None:
img = self.transform(img)

if self.target_transform is not None:
target = self.target_transform(target)

return img, target

def __len__(self) -> int:
return len(self.index)

def category_name(self, category_type: str, category_id: int) -> str:
"""
Args:
category_type(str): one of "full", "kingdom", "phylum", "class", "order", "family", "genus" or "super"
category_id(int): an index (class id) from this category

Returns:
the name of the category
"""
if category_type == "full":
return self.all_categories[category_id]
else:
if category_type not in self.categories_index:
raise ValueError(f"Invalid category type '{category_type}'")
else:
for name, id in self.categories_index[category_type].items():
if id == category_id:
return name
raise ValueError(f"Invalid category id {category_id} for {category_type}")

def _check_integrity(self) -> bool:
return os.path.exists(self.root) and len(os.listdir(self.root)) > 0

def download(self) -> None:
if self._check_integrity():
raise RuntimeError(
f"The directory {self.root} already exists. "
f"If you want to re-download or re-extract the images, delete the directory."
)

base_root = os.path.dirname(self.root)

download_and_extract_archive(
DATASET_URLS[self.version],
base_root,
filename=f"{self.version}.tgz",
md5=DATASET_MD5[self.version])

orig_dir_name = os.path.join(base_root, os.path.basename(DATASET_URLS[self.version]).rstrip(".tar.gz"))
if not os.path.exists(orig_dir_name):
raise RuntimeError(f"Unable to find downloaded files at {orig_dir_name}")
os.rename(orig_dir_name, self.root)
print(f"Dataset version '{self.version}' has been downloaded and prepared for use")