Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

port affine tests #7708

Merged
merged 9 commits into from
Jun 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 0 additions & 124 deletions test/test_transforms_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -668,130 +668,6 @@ def test_boundingbox_spatial_size(self, angle, expand):
assert out_img.spatial_size == out_bbox.spatial_size


class TestRandomAffine:
def test_assertions(self):
with pytest.raises(ValueError, match="is a single number, it must be positive"):
transforms.RandomAffine(-0.7)

for d in [[-0.7], [-0.7, 0, 0.7]]:
with pytest.raises(ValueError, match="degrees should be a sequence of length 2"):
transforms.RandomAffine(d)

with pytest.raises(TypeError, match="Got inappropriate fill arg"):
transforms.RandomAffine(12, fill="abc")

with pytest.raises(TypeError, match="Got inappropriate fill arg"):
transforms.RandomAffine(12, fill="abc")

for kwargs in [
{"center": 12},
{"translate": 12},
{"scale": 12},
]:
with pytest.raises(TypeError, match="should be a sequence of length"):
transforms.RandomAffine(12, **kwargs)

for kwargs in [{"center": [1, 2, 3]}, {"translate": [1, 2, 3]}, {"scale": [1, 2, 3]}]:
with pytest.raises(ValueError, match="should be a sequence of length"):
transforms.RandomAffine(12, **kwargs)

with pytest.raises(ValueError, match="translation values should be between 0 and 1"):
transforms.RandomAffine(12, translate=[-1.0, 2.0])

with pytest.raises(ValueError, match="scale values should be positive"):
transforms.RandomAffine(12, scale=[-1.0, 2.0])

with pytest.raises(ValueError, match="is a single number, it must be positive"):
transforms.RandomAffine(12, shear=-10)

for s in [[-0.7], [-0.7, 0, 0.7]]:
with pytest.raises(ValueError, match="shear should be a sequence of length 2"):
transforms.RandomAffine(12, shear=s)

@pytest.mark.parametrize("degrees", [23, [0, 45], (0, 45)])
@pytest.mark.parametrize("translate", [None, [0.1, 0.2]])
@pytest.mark.parametrize("scale", [None, [0.7, 1.2]])
@pytest.mark.parametrize("shear", [None, 2.0, [5.0, 15.0], [1.0, 2.0, 3.0, 4.0]])
def test__get_params(self, degrees, translate, scale, shear, mocker):
image = mocker.MagicMock(spec=datapoints.Image)
image.num_channels = 3
image.spatial_size = (24, 32)
h, w = image.spatial_size

transform = transforms.RandomAffine(degrees, translate=translate, scale=scale, shear=shear)
params = transform._get_params([image])

if not isinstance(degrees, (list, tuple)):
assert -degrees <= params["angle"] <= degrees
else:
assert degrees[0] <= params["angle"] <= degrees[1]

if translate is not None:
w_max = int(round(translate[0] * w))
h_max = int(round(translate[1] * h))
assert -w_max <= params["translate"][0] <= w_max
assert -h_max <= params["translate"][1] <= h_max
else:
assert params["translate"] == (0, 0)

if scale is not None:
assert scale[0] <= params["scale"] <= scale[1]
else:
assert params["scale"] == 1.0

if shear is not None:
if isinstance(shear, float):
assert -shear <= params["shear"][0] <= shear
assert params["shear"][1] == 0.0
elif len(shear) == 2:
assert shear[0] <= params["shear"][0] <= shear[1]
assert params["shear"][1] == 0.0
else:
assert shear[0] <= params["shear"][0] <= shear[1]
assert shear[2] <= params["shear"][1] <= shear[3]
else:
assert params["shear"] == (0, 0)

@pytest.mark.parametrize("degrees", [23, [0, 45], (0, 45)])
@pytest.mark.parametrize("translate", [None, [0.1, 0.2]])
@pytest.mark.parametrize("scale", [None, [0.7, 1.2]])
@pytest.mark.parametrize("shear", [None, 2.0, [5.0, 15.0], [1.0, 2.0, 3.0, 4.0]])
@pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
@pytest.mark.parametrize("center", [None, [2.0, 3.0]])
def test__transform(self, degrees, translate, scale, shear, fill, center, mocker):
interpolation = InterpolationMode.BILINEAR
transform = transforms.RandomAffine(
degrees,
translate=translate,
scale=scale,
shear=shear,
interpolation=interpolation,
fill=fill,
center=center,
)

if isinstance(degrees, (tuple, list)):
assert transform.degrees == [float(degrees[0]), float(degrees[1])]
else:
assert transform.degrees == [float(-degrees), float(degrees)]

fn = mocker.patch("torchvision.transforms.v2.functional.affine")
inpt = mocker.MagicMock(spec=datapoints.Image)
inpt.num_channels = 3
inpt.spatial_size = (24, 32)

# vfdev-5, Feature Request: let's store params as Transform attribute
# This could be also helpful for users
# Otherwise, we can mock transform._get_params
torch.manual_seed(12)
_ = transform(inpt)
torch.manual_seed(12)
params = transform._get_params([inpt])

fill = transforms._utils._convert_fill_arg(fill)
fn.assert_called_once_with(inpt, **params, interpolation=interpolation, fill=fill, center=center)


class TestRandomCrop:
def test_assertions(self):
with pytest.raises(ValueError, match="Please provide only two dimensions"):
Expand Down
83 changes: 0 additions & 83 deletions test/test_transforms_v2_functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -665,77 +665,6 @@ def _compute_affine_matrix(angle_, translate_, scale_, shear_, center_):
return true_matrix


@pytest.mark.parametrize("device", cpu_and_cuda())
def test_correctness_affine_bounding_box_on_fixed_input(device):
# Check transformation against known expected output
format = datapoints.BoundingBoxFormat.XYXY
spatial_size = (64, 64)
in_boxes = [
[20, 25, 35, 45],
[50, 5, 70, 22],
[spatial_size[1] // 2 - 10, spatial_size[0] // 2 - 10, spatial_size[1] // 2 + 10, spatial_size[0] // 2 + 10],
[1, 1, 5, 5],
]
in_boxes = torch.tensor(in_boxes, dtype=torch.float64, device=device)
# Tested parameters
angle = 63
scale = 0.89
dx = 0.12
dy = 0.23

# Expected bboxes computed using albumentations:
# from albumentations.augmentations.geometric.functional import bbox_shift_scale_rotate
# from albumentations.augmentations.geometric.functional import normalize_bbox, denormalize_bbox
# expected_bboxes = []
# for in_box in in_boxes:
# n_in_box = normalize_bbox(in_box, *spatial_size)
# n_out_box = bbox_shift_scale_rotate(n_in_box, -angle, scale, dx, dy, *spatial_size)
# out_box = denormalize_bbox(n_out_box, *spatial_size)
# expected_bboxes.append(out_box)
expected_bboxes = [
(24.522435977922218, 34.375689508290854, 46.443125279998114, 54.3516575015695),
(54.88288587110401, 50.08453280875634, 76.44484547743795, 72.81332520036864),
(27.709526487041554, 34.74952648704156, 51.650473512958435, 58.69047351295844),
(48.56528888843238, 9.611532109828834, 53.35347829361575, 14.39972151501221),
]

expected_bboxes = clamp_bounding_box(
datapoints.BoundingBox(expected_bboxes, format="XYXY", spatial_size=spatial_size)
).tolist()

output_boxes = F.affine_bounding_box(
in_boxes,
format=format,
spatial_size=spatial_size,
angle=angle,
translate=(dx * spatial_size[1], dy * spatial_size[0]),
scale=scale,
shear=(0, 0),
)

torch.testing.assert_close(output_boxes.tolist(), expected_bboxes)


@pytest.mark.parametrize("device", cpu_and_cuda())
def test_correctness_affine_segmentation_mask_on_fixed_input(device):
# Check transformation against known expected output and CPU/CUDA devices

# Create a fixed input segmentation mask with 2 square masks
# in top-left, bottom-left corners
mask = torch.zeros(1, 32, 32, dtype=torch.long, device=device)
mask[0, 2:10, 2:10] = 1
mask[0, 32 - 9 : 32 - 3, 3:9] = 2

# Rotate 90 degrees and scale
expected_mask = torch.rot90(mask, k=-1, dims=(-2, -1))
expected_mask = torch.nn.functional.interpolate(expected_mask[None, :].float(), size=(64, 64), mode="nearest")
expected_mask = expected_mask[0, :, 16 : 64 - 16, 16 : 64 - 16].long()

out_mask = F.affine_mask(mask, 90, [0.0, 0.0], 64.0 / 32.0, [0.0, 0.0])

torch.testing.assert_close(out_mask, expected_mask)


@pytest.mark.parametrize("angle", range(-90, 90, 56))
@pytest.mark.parametrize("expand, center", [(True, None), (False, None), (False, (12, 14))])
def test_correctness_rotate_bounding_box(angle, expand, center):
Expand Down Expand Up @@ -950,18 +879,6 @@ def test_correctness_crop_bounding_box(device, format, top, left, height, width,
torch.testing.assert_close(output_spatial_size, spatial_size)


@pytest.mark.parametrize("device", cpu_and_cuda())
def test_correctness_horizontal_flip_segmentation_mask_on_fixed_input(device):
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Forgot about this last time

mask = torch.zeros((3, 3, 3), dtype=torch.long, device=device)
mask[:, :, 0] = 1

out_mask = F.horizontal_flip_mask(mask)

expected_mask = torch.zeros((3, 3, 3), dtype=torch.long, device=device)
expected_mask[:, :, -1] = 1
torch.testing.assert_close(out_mask, expected_mask)


@pytest.mark.parametrize("device", cpu_and_cuda())
def test_correctness_vertical_flip_segmentation_mask_on_fixed_input(device):
mask = torch.zeros((3, 3, 3), dtype=torch.long, device=device)
Expand Down
Loading