Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support encoded RLE format in for COCO segmentations #8387

Merged
merged 3 commits into from
Jun 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 36 additions & 6 deletions test/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -782,32 +782,46 @@ def inject_fake_data(self, tmpdir, config):

annotation_folder = tmpdir / self._ANNOTATIONS_FOLDER
os.makedirs(annotation_folder)

segmentation_kind = config.pop("segmentation_kind", "list")
info = self._create_annotation_file(
annotation_folder, self._ANNOTATIONS_FILE, file_names, num_annotations_per_image
annotation_folder,
self._ANNOTATIONS_FILE,
file_names,
num_annotations_per_image,
segmentation_kind=segmentation_kind,
)

info["num_examples"] = num_images
return info

def _create_annotation_file(self, root, name, file_names, num_annotations_per_image):
def _create_annotation_file(self, root, name, file_names, num_annotations_per_image, segmentation_kind="list"):
image_ids = [int(file_name.stem) for file_name in file_names]
images = [dict(file_name=str(file_name), id=id) for file_name, id in zip(file_names, image_ids)]

annotations, info = self._create_annotations(image_ids, num_annotations_per_image)
annotations, info = self._create_annotations(image_ids, num_annotations_per_image, segmentation_kind)
self._create_json(root, name, dict(images=images, annotations=annotations))

return info

def _create_annotations(self, image_ids, num_annotations_per_image):
def _create_annotations(self, image_ids, num_annotations_per_image, segmentation_kind="list"):
annotations = []
annotion_id = 0

for image_id in itertools.islice(itertools.cycle(image_ids), len(image_ids) * num_annotations_per_image):
segmentation = {
"list": [torch.rand(8).tolist()],
"rle": {"size": [10, 10], "counts": [1]},
"rle_encoded": {"size": [2400, 2400], "counts": "PQRQ2[1\\Y2f0gNVNRhMg2"},
"bad": 123,
}[segmentation_kind]

annotations.append(
dict(
image_id=image_id,
id=annotion_id,
bbox=torch.rand(4).tolist(),
segmentation=[torch.rand(8).tolist()],
segmentation=segmentation,
category_id=int(torch.randint(91, ())),
area=float(torch.rand(1)),
iscrowd=int(torch.randint(2, size=(1,))),
Expand All @@ -832,11 +846,27 @@ def test_slice_error(self):
with pytest.raises(ValueError, match="Index must be of type integer"):
dataset[:2]

def test_segmentation_kind(self):
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Really not a fan of that test's logic, but I don't know how to better test that. @pmeier LMK if there are better options?

if isinstance(self, CocoCaptionsTestCase):
return

for segmentation_kind in ("list", "rle", "rle_encoded"):
config = {"segmentation_kind": segmentation_kind}
with self.create_dataset(config) as (dataset, _):
dataset = datasets.wrap_dataset_for_transforms_v2(dataset, target_keys="all")
list(dataset)

config = {"segmentation_kind": "bad"}
with self.create_dataset(config) as (dataset, _):
dataset = datasets.wrap_dataset_for_transforms_v2(dataset, target_keys="all")
with pytest.raises(ValueError, match="COCO segmentation expected to be a dict or a list"):
list(dataset)


class CocoCaptionsTestCase(CocoDetectionTestCase):
DATASET_CLASS = datasets.CocoCaptions

def _create_annotations(self, image_ids, num_annotations_per_image):
def _create_annotations(self, image_ids, num_annotations_per_image, segmentation_kind="list"):
captions = [str(idx) for idx in range(num_annotations_per_image)]
annotations = combinations_grid(image_id=image_ids, caption=captions)
for id, annotation in enumerate(annotations):
Expand Down
13 changes: 8 additions & 5 deletions torchvision/tv_tensors/_dataset_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -359,11 +359,14 @@ def coco_dectection_wrapper_factory(dataset, target_keys):
def segmentation_to_mask(segmentation, *, canvas_size):
from pycocotools import mask

segmentation = (
mask.frPyObjects(segmentation, *canvas_size)
if isinstance(segmentation, dict)
else mask.merge(mask.frPyObjects(segmentation, *canvas_size))
)
if isinstance(segmentation, dict):
# if counts is a string, it is already an encoded RLE mask
if not isinstance(segmentation["counts"], str):
segmentation = mask.frPyObjects(segmentation, *canvas_size)
elif isinstance(segmentation, list):
segmentation = mask.merge(mask.frPyObjects(segmentation, *canvas_size))
else:
raise ValueError(f"COCO segmentation expected to be a dict or a list, got {type(segmentation)}")
return torch.from_numpy(mask.decode(segmentation))

def wrapper(idx, sample):
Expand Down
Loading