pyminiply
is a Python library for rapidly reading PLY files. It is a
Python wrapper around the fast C++ PLY reading library provided by
miniply. Thanks @vilya!
The main advantage of pyminiply
over other PLY reading libraries is
its performance. See the benchmarks below for more details.
The recommended way to install pyminiply
is via PyPI:
pip install pyminiply
Optionally with PyVista:
pip install pyminipl[pyvista]
You can also clone the repository and install it from source:
git clone https://github.com/pyvista/pyminiply.git
cd pyminiply
git submodule update --init --recursive
pip install .
Load in the vertices, indices, normals, UV, and color information from a PLY file:
>>> import pyminiply
>>> vertices, indices, normals, uv, color = pyminiply.read("example.ply")
>>> vertices
array([[ 5.0000000e-01, -5.0000000e-01, -5.5511151e-17],
[ 4.0000001e-01, -5.0000000e-01, -4.4408922e-17],
[ 3.0000001e-01, -5.0000000e-01, -3.3306692e-17],
...,
[-4.2500001e-01, 5.0000000e-01, 4.7184480e-17],
[-4.7499999e-01, 4.4999999e-01, 5.2735593e-17],
[-5.0000000e-01, 4.2500001e-01, 5.5511151e-17]], dtype=float32)
>>> indices
array([[ 0, 442, 441],
[ 442, 122, 443],
[ 443, 121, 441],
...,
[1677, 438, 1679],
[1679, 439, 1676],
[1677, 1679, 1676]], dtype=int32)
>>> normals
array([[-1.110223e-16, 0.000000e+00, -1.000000e+00],
[-1.110223e-16, 0.000000e+00, -1.000000e+00],
[-1.110223e-16, 0.000000e+00, -1.000000e+00],
...,
[-1.110223e-16, 0.000000e+00, -1.000000e+00],
[-1.110223e-16, 0.000000e+00, -1.000000e+00],
[-1.110223e-16, 0.000000e+00, -1.000000e+00]], dtype=float32)
>>> uv
array([[0. , 0. ],
[0.1 , 0. ],
[0.2 , 0. ],
...,
[0.92499995, 1. ],
[0.975 , 0.95 ],
[1. , 0.92499995]], dtype=float32)
>>> color
array([[ 0, 0, 0],
[ 0, 0, 0],
[ 0, 0, 0],
...,
[254, 254, 254],
[254, 254, 254],
[255, 255, 255]], dtype=uint8)
You can also read in the PLY file as a PyVista PolyData and immediately plot it.
>>> import pyminiply
>>> mesh = pyminiply.read_as_mesh("example.ply")
>>> mesh
PolyData (0x7f0653579c00)
N Cells: 200
N Points: 121
N Strips: 0
X Bounds: -5.000e-01, 5.000e-01
Y Bounds: -5.000e-01, 5.000e-01
Z Bounds: -5.551e-17, 5.551e-17
N Arrays: 2
>>> mesh.plot()
The main reason behind writing yet another PLY file reader for Python is
to leverage the highly performant miniply
library.
There is already an benchmark demonstrating how miniply
outperforms
in comparison to competing C and C++ libraries at ply_io_benchmark when reading PLY files.
The benchmark here shows how pyminiply
performs relative to other
Python PLY file readers.
Here are the timings from reading in a 1,000,000 point binary PLY file on an Intel i9-14900KF:
Library | Time (seconds) |
---|---|
pyminiply | 0.027 |
open3d | 0.102 |
PyVista (VTK) | 0.214 |
meshio | 0.249 |
plyfile | 4.039 |
Benchmark source:
import time
from timeit import timeit
import numpy as np
import pyvista as pv
import pyminiply
import plyfile
import meshio
import open3d
number = 10
filename = "tmp.ply"
mesh = pv.Plane(i_resolution=999, j_resolution=999).triangulate()
mesh.clear_data()
mesh.save(filename)
telap = timeit(lambda: pyminiply.read(filename), number=number)
print(f"pyminiply: {telap/number:.3f}")
telap = timeit(lambda: open3d.io.read_point_cloud(filename), number=number)
print(f"open3d: {telap/number:.3f}")
telap = timeit(lambda: pv.read(filename), number=number)
print(f"VTK/PyVista: {telap/number:.3f}")
telap = timeit(lambda: meshio.read(filename), number=number)
print(f"meshio: {telap/number:.3f}")
# plyfile
number = 3 # less because it takes a while
telap = timeit(lambda: plyfile.PlyData.read(filename), number=number)
print(f"plyfile: {telap/number:.3f}")
Here's an additional benchmark comparing VTK/PyVista with pyminiply
:
import numpy as np
import time
import pyvista as pv
import matplotlib.pyplot as plt
import pyminiply
times = []
filename = 'tmp.ply'
for res in range(50, 800, 50):
mesh = pv.Plane(i_resolution=res, j_resolution=res).triangulate().subdivide(2)
mesh.clear_data()
mesh.save(filename)
tstart = time.time()
pv_mesh = pv.read(filename)
vtk_time = time.time() - tstart
tstart = time.time()
ply_mesh = pyminiply.read_as_mesh(filename)
ply_reader_time = time.time() - tstart
assert np.allclose(pv_mesh['Normals'], ply_mesh['Normals'])
assert np.allclose(pv_mesh.points, ply_mesh.points)
assert np.allclose(pv_mesh._connectivity_array, ply_mesh._connectivity_array)
times.append([mesh.n_points, vtk_time, ply_reader_time])
print(times[-1])
times = np.array(times)
plt.figure(1)
plt.title('PLY load time')
plt.plot(times[:, 0], times[:, 1], label='VTK')
plt.plot(times[:, 0], times[:, 2], label='pyminiply')
plt.xlabel('Number of Points')
plt.ylabel('Time to Load (seconds)')
plt.legend()
plt.figure(2)
plt.title('PLY load time (Log-Log)')
plt.loglog(times[:, 0], times[:, 1], label='VTK')
plt.loglog(times[:, 0], times[:, 2], label='pyminiply')
plt.xlabel('Number of Points')
plt.ylabel('Time to Load (seconds)')
plt.legend()
plt.show()
This project relies on miniply
and credit goes to the original
author for the excellent C++ library. That work is licensed under the
MIT License.
The work in this repository is also licensed under the MIT License.
If you are having issues, please feel free to raise an Issue.