Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add binary_encoder parameterized in hyperspherical coordinates #1584

Open
wants to merge 28 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
28 commits
Select commit Hold shift + click to select a range
bf82342
implementation
renatomello Feb 10, 2025
1976060
fix last angle
renatomello Feb 12, 2025
dcc4fe3
separate in functions
renatomello Feb 12, 2025
8ededf2
add test param
renatomello Feb 12, 2025
1c9f764
test complex data
renatomello Feb 12, 2025
223ffa0
fix bug
renatomello Feb 12, 2025
fd59dc6
remove prints
renatomello Feb 12, 2025
159d037
docstring
renatomello Feb 12, 2025
a34771f
finx unrelated docstring
renatomello Feb 12, 2025
5cc4c98
Merge branch 'master' into binary_encoder
renatomello Feb 26, 2025
05353d6
Merge branch 'master' into binary_encoder
renatomello Feb 26, 2025
331e45b
Merge branch 'master' into binary_encoder
renatomello Feb 27, 2025
38886cd
Merge branch 'master' into binary_encoder
renatomello Mar 5, 2025
f59e253
Update src/qibo/models/encodings.py
renatomello Mar 11, 2025
fbe1d14
Merge branch 'master' into binary_encoder
renatomello Mar 11, 2025
b89b35c
Update src/qibo/models/encodings.py
renatomello Mar 11, 2025
d41cd2d
improvements
renatomello Mar 11, 2025
0d1ff47
coverage
renatomello Mar 11, 2025
2cbbe3a
Alejandro is the man
renatomello Mar 11, 2025
c67fd74
fix test
AlejandroSopena Mar 11, 2025
1dbb06d
Update src/qibo/models/encodings.py
renatomello Mar 11, 2025
720142b
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Mar 11, 2025
921f36e
Update src/qibo/models/encodings.py
renatomello Mar 13, 2025
03e2e61
helper function
renatomello Mar 13, 2025
a6e7a19
fix lint
renatomello Mar 13, 2025
7cd6fa9
add todo and reorder tests
renatomello Mar 13, 2025
d2d5b7c
revert back to loop
renatomello Mar 13, 2025
e1cf700
fix bugs
renatomello Mar 13, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
277 changes: 226 additions & 51 deletions src/qibo/models/encodings.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

import math
from inspect import signature
from re import finditer
from typing import List, Optional, Union

import numpy as np
Expand Down Expand Up @@ -117,63 +118,58 @@ def phase_encoder(data, rotation: str = "RY", **kwargs):
return circuit


def binary_encoder(data, **kwargs):
"""Create circuit that encodes real-valued ``data`` in all amplitudes of the computational basis.
def binary_encoder(data, parametrization: str = "hyperspherical", **kwargs):
"""Create circuit that encodes :math:`1`-dimensional data in all amplitudes of the computational basis.

``data`` has to be normalized with respect to the Hilbert-Schmidt norm.
Resulting circuit parametrizes ``data`` in Hopf coordinates in the
:math:`(2^{n} - 1)`-unit sphere.
Given data vector :math:`\\mathbf{x} \\in \\mathbb{C}^{d}`, with :math:`d = 2^{n}`,
this function generates a quantum circuit :math:`\\mathrm{Load}` that encodes
:math:`\\mathbf{x}` in the amplitudes of an :math:`n`-qubit quantum state as

.. math::
\\mathrm{Load}(\\mathbf{x}) \\, \\ket{0}^{\\otimes \\, n} = \\sum_{j=0}^{d-1} \\,
\\frac{x_{j}}{\\|\\mathbf{x}\\|_{F}} \\, \\ket{b_{j}} \\, ,

where :math:`b_{j} \\in \\{0, \\, 1\\}^{\\otimes \\, n}` is the :math:`n`-bit representation
of the integer :math:`j`, :math:`\\|\\cdot\\|_{F}` is the Frobenius norm.

Resulting circuit parametrizes ``data`` in either ``hyperspherical`` or ``Hopf`` coordinates
in the :math:`(2^{n} - 1)`-unit sphere.

Args:
data (ndarray): :math:`1`-dimensional array or length :math:`2^{n}`
data (ndarray): :math:`1`-dimensional array or length :math:`d = 2^{n}`
to be loaded in the amplitudes of a :math:`n`-qubit quantum state.

Returns:
:class:`qibo.models.circuit.Circuit`: Circuit that loads ``data`` in binary encoding.

References:
1. R. M. S. Farias, T. O. Maciel, G. Camilo, R. Lin, S. Ramos-Calderer, and L. Aolita,
*Quantum encoder for fixed Hamming-weight subspaces*
`arXiv:2405.20408 [quant-ph] <https://arxiv.org/abs/2405.20408>`_.

2. `Hyperpherical coordinates <https://en.wikipedia.org/wiki/N-sphere>`_.

3. H. S. Cohl, *Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental
solution of the polyharmonic equation and polyspherical addition theorems*, `Symmetry,
Integrability and Geometry: Methods and Applications 10.3842/sigma.2013.042 (2013)
<https://arxiv.org/abs/1209.6047>`_.
"""
dims = len(data)
nqubits = float(np.log2(dims))
if not nqubits.is_integer():
raise_error(ValueError, "`data` size must be a power of 2.")
nqubits = int(nqubits)

base_strings = [f"{elem:0{nqubits}b}" for elem in range(dims)]
base_strings = np.reshape(base_strings, (-1, 2))
strings = [base_strings]
for _ in range(nqubits - 1):
base_strings = np.reshape(base_strings[:, 0], (-1, 2))
strings.append(base_strings)
strings = strings[::-1]

targets_and_controls = []
for pairs in strings:
for pair in pairs:
targets, controls, anticontrols = [], [], []
for k, bits in enumerate(zip(pair[0], pair[1])):
if bits == ("0", "0"):
anticontrols.append(k)
elif bits == ("1", "1"):
controls.append(k)
elif bits == ("0", "1"):
targets.append(k)
targets_and_controls.append([targets, controls, anticontrols])

circuit = Circuit(nqubits, **kwargs)
for targets, controls, anticontrols in targets_and_controls:
gate_list = []
if len(anticontrols) > 0:
gate_list.append(gates.X(qubit) for qubit in anticontrols)
gate_list.append(
gates.RY(targets[0], 0.0).controlled_by(*(controls + anticontrols))
)
if len(anticontrols) > 0:
gate_list.append(gates.X(qubit) for qubit in anticontrols)
circuit.add(gate_list)
complex_data = bool(
"complex" in str(data.dtype)
) # backend-agnostic way of checking the dtype

angles = _generate_rbs_angles(data, dims, "tree")
circuit.set_parameters(2 * angles)
if parametrization == "hopf":
return _binary_encoder_hopf(data, nqubits, complex_data=complex_data, **kwargs)

return circuit
return _binary_encoder_hyperspherical(
data, nqubits, complex_data=complex_data, **kwargs
)


def unary_encoder(data, architecture: str = "tree", **kwargs):
Expand Down Expand Up @@ -224,7 +220,7 @@ def unary_encoder(data, architecture: str = "tree", **kwargs):
circuit += circuit_rbs

# calculating phases and setting circuit parameters
phases = _generate_rbs_angles(data, nqubits, architecture)
phases = _generate_rbs_angles(data, architecture, nqubits)
circuit.set_parameters(phases)

return circuit
Expand Down Expand Up @@ -330,6 +326,8 @@ def hamming_weight_encoder(
weight: int,
full_hwp: bool = False,
optimize_controls: bool = True,
phase_correction: bool = True,
initial_string=None,
**kwargs,
):
"""Create circuit that encodes ``data`` in the Hamming-weight-:math:`k` basis of ``nqubits``.
Expand Down Expand Up @@ -368,7 +366,8 @@ def hamming_weight_encoder(
"""
complex_data = bool(data.dtype in [complex, np.dtype("complex128")])

initial_string = np.array([1] * weight + [0] * (nqubits - weight))
if initial_string is None:
initial_string = np.array([1] * weight + [0] * (nqubits - weight))
bitstrings, targets_and_controls = _ehrlich_algorithm(initial_string)

# sort data such that the encoding is performed in lexicographical order
Expand All @@ -380,7 +379,7 @@ def hamming_weight_encoder(

# Calculate all gate phases necessary to encode the amplitudes.
_data = np.abs(data) if complex_data else data
thetas = _generate_rbs_angles(_data, nqubits, architecture="diagonal")
thetas = _generate_rbs_angles(_data, architecture="diagonal")
thetas = np.asarray(thetas, dtype=type(thetas[0]))
phis = np.zeros(len(thetas) + 1)
if complex_data:
Expand Down Expand Up @@ -421,7 +420,7 @@ def hamming_weight_encoder(
)
circuit.add(gate)

if complex_data:
if complex_data and phase_correction:
circuit.add(_get_phase_gate_correction(bitstrings[-1], phis[-1]))

return circuit
Expand Down Expand Up @@ -628,29 +627,35 @@ def _generate_rbs_pairs(nqubits: int, architecture: str, **kwargs):
return circuit, pairs_rbs


def _generate_rbs_angles(data, nqubits: int, architecture: str):
def _generate_rbs_angles(data, architecture: str, nqubits: int = None):
"""Generate list of angles for RBS gates based on ``architecture``.

Args:
data (ndarray, optional): :math:`1`-dimensional array of data to be loaded.
nqubits (int): number of qubits.
architecture(str, optional): circuit architecture used for the unary loader.
If ``diagonal``, uses a ladder-like structure.
If ``tree``, uses a binary-tree-based structure.
Defaults to ``tree``.
nqubits (int): Number of qubits. To be used then ``architecture="tree"``.

Returns:
list: List of phases for RBS gates.
"""
if architecture == "diagonal":
engine = _check_engine(data)
phases = [
math.atan2(engine.linalg.norm(data[k + 1 :]), data[k])
engine.arctan2(engine.linalg.norm(data[k + 1 :]), data[k])
for k in range(len(data) - 2)
]
phases.append(math.atan2(data[-1], data[-2]))
phases.append(engine.arctan2(data[-1], data[-2]))

if architecture == "tree":
if nqubits is None: # pragma: no cover
raise_error(
TypeError,
'``nqubits`` must be specified when ``architecture=="tree"``.',
)

j_max = int(nqubits / 2)

r_array = np.zeros(nqubits - 1, dtype=float)
Expand All @@ -668,6 +673,8 @@ def _generate_rbs_angles(data, nqubits: int, architecture: str):
r_array[j - 1] = math.sqrt(r_array[2 * j] ** 2 + r_array[2 * j - 1] ** 2)
phases[j - 1] = math.acos(r_array[2 * j - 1] / r_array[j - 1])

phases = np.array([float(phase) for phase in phases])
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is there any specific reason why the phases are not returned as backend specific arrays? (thus with the usual backend.cast)

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

all functions in this module are backend-agnostic as of right now. If we were to introduce the backend as an argument, I'd prefer to do it in all encodings are once on a separate PR.


return phases


Expand Down Expand Up @@ -962,7 +969,6 @@ def _get_gate(
`arXiv:2405.20408 [quant-ph] <https://arxiv.org/abs/2405.20408>`_.
"""
if len(qubits_in) == 0 and len(qubits_out) == 1: # pragma: no cover
# Important for future binary encoder
gate_list = (
gates.U3(*qubits_out, 2 * theta, 2 * phi, 0.0).controlled_by(*controls)
if complex_data
Expand Down Expand Up @@ -999,7 +1005,7 @@ def _get_phase_gate_correction(last_string, phase: float):
"""Return final gate of HW-k circuits that encode complex data."""

# to avoid circular import error
from qibo.quantum_info.utils import hamming_weight
from qibo.quantum_info.utils import hamming_weight # pylint: disable=C0415

if isinstance(last_string, str):
last_string = np.asarray(list(last_string), dtype=int)
Expand All @@ -1011,3 +1017,172 @@ def _get_phase_gate_correction(last_string, phase: float):

# adding an RZ gate to correct the phase of the last amplitude encoded
return gates.RZ(last_zero, 2 * phase).controlled_by(*last_controls)


def _binary_encoder_hopf(data, nqubits, complex_data, **kwargs):
# TODO: generalize to complex-valued data
dims = 2**nqubits

base_strings = [f"{elem:0{nqubits}b}" for elem in range(dims)]
base_strings = np.reshape(base_strings, (-1, 2))
strings = [base_strings]
for _ in range(nqubits - 1):
base_strings = np.reshape(base_strings[:, 0], (-1, 2))
strings.append(base_strings)
strings = strings[::-1]

targets_and_controls = []
for pairs in strings:
for pair in pairs:
targets, controls, anticontrols = [], [], []
for k, bits in enumerate(zip(pair[0], pair[1])):
if bits == ("0", "0"):
anticontrols.append(k)
elif bits == ("1", "1"):
controls.append(k)
elif bits == ("0", "1"):
targets.append(k)
targets_and_controls.append([targets, controls, anticontrols])

circuit = Circuit(nqubits, **kwargs)
for targets, controls, anticontrols in targets_and_controls:
gate_list = []
if len(anticontrols) > 0:
gate_list.append(gates.X(qubit) for qubit in anticontrols)
gate_list.append(
gates.RY(targets[0], 0.0).controlled_by(*(controls + anticontrols))
)
if len(anticontrols) > 0:
gate_list.append(gates.X(qubit) for qubit in anticontrols)
circuit.add(gate_list)

angles = _generate_rbs_angles(data, "tree", dims)
circuit.set_parameters(2 * angles)

return circuit


def _binary_encoder_hyperspherical(data, nqubits, complex_data: bool, **kwargs):
dims = 2**nqubits
last_qubit = nqubits - 1

indexes_to_double, lex_order_global = [0], [0]

circuit = Circuit(nqubits, **kwargs)
if complex_data:
circuit.add(gates.U3(last_qubit, 0.0, 0.0, 0.0))
else:
circuit.add(gates.RY(last_qubit, 0.0))

cummul_n_k = 0
initial_string = np.array([1] + [0] * (nqubits - 1))
for weight in range(1, nqubits):
n_choose_k = int(binom(nqubits, weight))
cummul_n_k += n_choose_k
placeholder = np.random.rand(n_choose_k)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

not sure how big n_choose_k can get, but just as a reminder generating samples with numba and cupy should be faster if it's big.

Copy link
Contributor Author

@renatomello renatomello Mar 11, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The size is the regular binomial coefficient, tending to $O\left(n^{k} / k!\right)$. I think it tends to $\sim 2^{0.9,n}$ when $k = n /2$.

if complex_data:
placeholder = placeholder.astype(complex) + 1j * np.random.rand(n_choose_k)

circuit += hamming_weight_encoder(
placeholder,
nqubits,
weight,
full_hwp=True,
optimize_controls=False,
phase_correction=False,
initial_string=initial_string,
**kwargs,
)

# add gate to be place between blocks of Hamming-weight encoders
gate, lex_order, initial_string, phase_index = _intermediate_gate(
initial_string,
weight,
last_qubit,
cummul_n_k,
complex_data,
)
circuit.add(gate)
lex_order_global.extend(lex_order)
indexes_to_double.append(phase_index)

# sort data such that the encoding is performed in lexicographical order
lex_order_global.append(dims - 1)
lex_order_sorted = np.sort(np.copy(lex_order_global))
lex_order_global = [
np.where(lex_order_sorted == num)[0][0] for num in lex_order_global
]
data = data[lex_order_global]
del lex_order_global, lex_order_sorted

_data = np.abs(data) if complex_data else data

thetas = _generate_rbs_angles(_data, architecture="diagonal")
thetas = np.asarray(thetas, dtype=type(thetas[0]))

if complex_data:
phis = np.zeros(len(thetas) + 1)
phis[0] = _angle_mod_two_pi(-np.angle(data[0]))
for k in range(1, len(phis)):
phis[k] = _angle_mod_two_pi(-np.angle(data[k]) + np.sum(phis[:k]))

angles = []
for k in range(len(thetas)):
if k in indexes_to_double:
angle = (
[2 * thetas[k], 2 * phis[k], 0.0] if complex_data else [2 * thetas[k]]
)
else:
angle = [thetas[k], -phis[k], phis[k]] if complex_data else [thetas[k]]

angles.extend(angle)

if complex_data:
angles[-2] = 2 * _angle_mod_two_pi(
(np.angle(data[-1]) - np.angle(data[-2])) / 2
)
angles[-1] = 2 * _angle_mod_two_pi(
(-1 / 2) * (np.angle(data[-2]) + np.angle(data[-1])) + np.sum(phis[:-2])
)

# necessary for GPU backends
angles = [float(angle) for angle in angles]

circuit.set_parameters(angles)

return circuit


def _intermediate_gate(
initial_string,
weight,
last_qubit,
cummul_n_k,
complex_data,
):
"""Calculate where to place the intermediate gate by finding the last string
of the previous Hamming-weight block that was encoded"""

# sort data such that the encoding is performed in lexicographical order
bitstrings = _ehrlich_algorithm(initial_string, False)
initial_string = bitstrings[-1]
lex_order = [int(string, 2) for string in bitstrings]

controls = [item.start() for item in finditer("1", initial_string)]
index = (
initial_string.find("0")
if weight % 2 == 0
else last_qubit - initial_string[::-1].find("0")
)
initial_string = np.array(list(initial_string), dtype=int)
initial_string[index] = 1
initial_string = initial_string[::-1]

phase_index = cummul_n_k
gate = (
gates.U3(index, 0.0, 0.0, 0.0).controlled_by(*controls)
if complex_data
else gates.RY(index, 0.0).controlled_by(*controls)
)

return gate, lex_order, initial_string, phase_index
Loading