Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Expose apply to allow arbitrary unitary application #208

Merged
merged 2 commits into from
Dec 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 110 additions & 1 deletion sparsesim/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,10 @@ mod nearly_zero;
mod matrix_testing;

use crate::nearly_zero::NearlyZero;
use ndarray::{s, Array2};
use num_bigint::BigUint;
use num_complex::Complex64;
use num_traits::{One, Zero};
use num_traits::{One, ToPrimitive, Zero};
use rand::{rngs::StdRng, Rng, SeedableRng};
use rustc_hash::{FxHashMap, FxHashSet};
use std::{cell::RefCell, f64::consts::FRAC_1_SQRT_2, fmt::Write};
Expand Down Expand Up @@ -1194,6 +1195,114 @@ impl QuantumSim {

self.mcrotation(ctls, theta, target, true);
}

/// Applies the given unitary to the given targets, extending the unitary to accomodate controls if any.
/// # Panics
///
/// This function will panic if given ids in either targets or optional controls that do not correspond to allocated
/// qubits, or if there is a duplicate id in targets or controls.
/// This funciton will panic if the given unitary matrix does not match the number of targets provided.
/// This function will panic if the given unitary is not square.
/// This function will panic if the total number of targets and controls too large for a `u32`.
pub fn apply(
&mut self,
unitary: &Array2<Complex64>,
targets: &[usize],
controls: Option<&[usize]>,
) {
let mut targets = targets.to_vec();
let mut unitary = unitary.clone();

assert!(
unitary.ncols() == unitary.nrows(),
"Application given non-square matrix."
);

assert!(
targets.len() == unitary.ncols() / 2,
"Application given incorrect number of targets; expected {}, given {}.",
unitary.ncols() / 2,
targets.len()
);

if let Some(ctrls) = controls {
// Add controls in order as targets.
ctrls
.iter()
.enumerate()
.for_each(|(index, &element)| targets.insert(index, element));

// Extend the provided unitary by inserting it into an identity matrix.
unitary = controlled(&unitary, ctrls.len().try_into().unwrap());
}
Self::check_for_duplicates(&targets);

self.flush_queue(&targets, FlushLevel::HRxRy);

targets
.iter()
.rev()
.enumerate()
.for_each(|(target_loc, target)| {
let loc = *self
.id_map
.get(target)
.unwrap_or_else(|| panic!("Unable to find qubit with id {target}"));
let swap_id = *self
.id_map
.iter()
.find(|(_, &value)| value == target_loc)
.unwrap()
.0;
self.swap_qubit_state(loc, target_loc);
*(self.id_map.get_mut(&swap_id).unwrap()) = loc;
*(self.id_map.get_mut(target).unwrap()) = target_loc;
});

let op_size = unitary.nrows();
self.state = self
.state
.drain()
.fold(SparseState::default(), |mut accum, (index, val)| {
let i = &index / op_size;
let l = (&index % op_size)
.to_usize()
.expect("Cannot operate on more than 64 qubits at a time.");
for j in (0..op_size).filter(|j| !unitary.row(*j)[l].is_nearly_zero()) {
let loc = (&i * op_size) + j;
if let Some(entry) = accum.get_mut(&loc) {
*entry += unitary.row(j)[l] * val;
} else {
accum.insert((&i * op_size) + j, unitary.row(j)[l] * val);
}
if accum
.get(&loc)
.map_or_else(|| false, |entry| (*entry).is_nearly_zero())
{
accum.remove(&loc);
}
}
accum
});
assert!(
!self.state.is_empty(),
"State vector should never be empty."
);
}
}

/// Extends the given unitary matrix into a matrix corresponding to the same unitary with a given number of controls
/// by inserting it into an identity matrix.
#[must_use]
pub fn controlled(u: &Array2<Complex64>, num_ctrls: u32) -> Array2<Complex64> {
let mut controlled_u = Array2::eye(u.nrows() * 2_usize.pow(num_ctrls));
controlled_u
.slice_mut(s![
(controlled_u.nrows() - u.nrows())..,
(controlled_u.ncols() - u.ncols())..
])
.assign(u);
controlled_u
}

#[cfg(test)]
Expand Down
117 changes: 4 additions & 113 deletions sparsesim/src/matrix_testing.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,109 +2,12 @@
// Licensed under the MIT License.

use core::f64::consts::FRAC_1_SQRT_2;
use ndarray::{array, s, Array2};
use ndarray::{array, Array2};
use num_complex::Complex64;
use num_traits::One;
use num_traits::ToPrimitive;
use num_traits::Zero;

use crate::{nearly_zero::NearlyZero, FlushLevel, QuantumSim, SparseState};

impl QuantumSim {
/// Applies the given unitary to the given targets, extending the unitary to accomodate controls if any.
/// # Panics
///
/// This function will panic if given ids in either targets or optional controls that do not correspond to allocated
/// qubits, or if there is a duplicate id in targets or controls.
/// This funciton will panic if the given unitary matrix does not match the number of targets provided.
/// This function will panic if the given unitary is not square.
/// This function will panic if the total number of targets and controls too large for a `u32`.
pub(crate) fn apply(
&mut self,
unitary: &Array2<Complex64>,
targets: &[usize],
controls: Option<&[usize]>,
) {
let mut targets = targets.to_vec();
let mut unitary = unitary.clone();

assert!(
unitary.ncols() == unitary.nrows(),
"Application given non-square matrix."
);

assert!(
targets.len() == unitary.ncols() / 2,
"Application given incorrect number of targets; expected {}, given {}.",
unitary.ncols() / 2,
targets.len()
);

if let Some(ctrls) = controls {
// Add controls in order as targets.
ctrls
.iter()
.enumerate()
.for_each(|(index, &element)| targets.insert(index, element));

// Extend the provided unitary by inserting it into an identity matrix.
unitary = controlled(&unitary, ctrls.len().try_into().unwrap());
}
Self::check_for_duplicates(&targets);

self.flush_queue(&targets, FlushLevel::HRxRy);

targets
.iter()
.rev()
.enumerate()
.for_each(|(target_loc, target)| {
let loc = *self
.id_map
.get(target)
.unwrap_or_else(|| panic!("Unable to find qubit with id {target}"));
let swap_id = *self
.id_map
.iter()
.find(|(_, &value)| value == target_loc)
.unwrap()
.0;
self.swap_qubit_state(loc, target_loc);
*(self.id_map.get_mut(&swap_id).unwrap()) = loc;
*(self.id_map.get_mut(target).unwrap()) = target_loc;
});

let op_size = unitary.nrows();
self.state = self
.state
.drain()
.fold(SparseState::default(), |mut accum, (index, val)| {
let i = &index / op_size;
let l = (&index % op_size)
.to_usize()
.expect("Cannot operate on more than 64 qubits at a time.");
for j in (0..op_size).filter(|j| !unitary.row(*j)[l].is_nearly_zero()) {
let loc = (&i * op_size) + j;
if let Some(entry) = accum.get_mut(&loc) {
*entry += unitary.row(j)[l] * val;
} else {
accum.insert((&i * op_size) + j, unitary.row(j)[l] * val);
}
if accum
.get(&loc)
.map_or_else(|| false, |entry| (*entry).is_nearly_zero())
{
accum.remove(&loc);
}
}
accum
});
assert!(
!self.state.is_empty(),
"State vector should never be empty."
);
}
}
use crate::{nearly_zero::NearlyZero, QuantumSim};

/// Returns a unitary matrix representing the `X` operation.
#[must_use]
Expand Down Expand Up @@ -255,21 +158,9 @@ pub fn adjoint(u: &Array2<Complex64>) -> Array2<Complex64> {
u.t().map(Complex64::conj)
}

/// Extends the given unitary matrix into a matrix corresponding to the same unitary with a given number of controls
/// by inserting it into an identity matrix.
#[must_use]
pub fn controlled(u: &Array2<Complex64>, num_ctrls: u32) -> Array2<Complex64> {
let mut controlled_u = Array2::eye(u.nrows() * 2_usize.pow(num_ctrls));
controlled_u
.slice_mut(s![
(controlled_u.nrows() - u.nrows())..,
(controlled_u.ncols() - u.ncols())..
])
.assign(u);
controlled_u
}

mod tests {
use crate::controlled;

use super::*;
use core::f64::consts::PI;

Expand Down
Loading