Skip to content
This repository has been archived by the owner on Dec 7, 2021. It is now read-only.

Fixed bugs of converters in the case of that the range of variable is 0 #1259

Merged
merged 7 commits into from
Sep 28, 2020
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 63 additions & 28 deletions qiskit/optimization/converters/inequality_to_equality.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,43 +186,60 @@ def _add_integer_slack_var_linear_constraint(self, linear, sense, rhs, name):

lhs_lb, lhs_ub = self._calc_linear_bounds(linear)

var_added = False

if sense == Constraint.Sense.LE:
sign = 1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=new_rhs - lhs_lb)
var_ub = new_rhs - lhs_lb
if var_ub > 0:
sign = 1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
elif sense == Constraint.Sense.GE:
sign = -1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=lhs_ub - new_rhs)
var_ub = lhs_ub - new_rhs
if var_ub > 0:
sign = -1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
else:
raise QiskitOptimizationError(
'The type of Sense in {} is not supported'.format(name))

# Add a new equality constraint.
new_linear = copy.deepcopy(linear)
new_linear[slack_name] = sign
if var_added:
new_linear[slack_name] = sign
self._dst.linear_constraint(new_linear, "==", new_rhs, name)

def _add_continuous_slack_var_linear_constraint(self, linear, sense, rhs, name):
slack_name = name + self._delimiter + 'continuous_slack'

lhs_lb, lhs_ub = self._calc_linear_bounds(linear)

var_added = False
if sense == Constraint.Sense.LE:
sign = 1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=rhs - lhs_lb)
var_ub = rhs - lhs_lb
if var_ub > 0:
sign = 1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
elif sense == Constraint.Sense.GE:
sign = -1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=lhs_ub - rhs)
var_ub = lhs_ub - rhs
if var_ub > 0:
sign = -1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
else:
raise QiskitOptimizationError(
'The type of Sense in {} is not supported'.format(name))

# Add a new equality constraint.
new_linear = copy.deepcopy(linear)
new_linear[slack_name] = sign
if var_added:
new_linear[slack_name] = sign
self._dst.linear_constraint(new_linear, "==", rhs, name)

def _add_auto_slack_var_linear_constraint(self, linear, sense, rhs, name):
Expand Down Expand Up @@ -255,21 +272,30 @@ def _add_integer_slack_var_quadratic_constraint(self, linear, quadratic, sense,

lhs_lb, lhs_ub = self._calc_quadratic_bounds(linear, quadratic)

var_added = False

if sense == Constraint.Sense.LE:
sign = 1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=new_rhs - lhs_lb)
var_ub = new_rhs - lhs_lb
if var_ub > 0:
sign = 1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
elif sense == Constraint.Sense.GE:
sign = -1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=lhs_ub - new_rhs)
var_ub = lhs_ub - new_rhs
if var_ub > 0:
sign = -1
self._dst.integer_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
else:
raise QiskitOptimizationError(
'The type of Sense in {} is not supported'.format(name))

# Add a new equality constraint.
new_linear = copy.deepcopy(linear)
new_linear[slack_name] = sign
if var_added:
new_linear[slack_name] = sign
self._dst.quadratic_constraint(
new_linear, quadratic, "==", new_rhs, name)

Expand All @@ -279,21 +305,30 @@ def _add_continuous_slack_var_quadratic_constraint(self, linear, quadratic, sens

lhs_lb, lhs_ub = self._calc_quadratic_bounds(linear, quadratic)

var_added = False

if sense == Constraint.Sense.LE:
sign = 1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=rhs - lhs_lb)
var_ub = rhs - lhs_lb
if var_ub > 0:
sign = 1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=var_ub)
var_added = True
elif sense == Constraint.Sense.GE:
sign = -1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=lhs_ub - rhs)
var_ub = lhs_ub - rhs
if var_ub > 0:
sign = -1
self._dst.continuous_var(
name=slack_name, lowerbound=0, upperbound=lhs_ub - rhs)
var_added = True
else:
raise QiskitOptimizationError(
'The type of Sense in {} is not supported'.format(name))

# Add a new equality constraint.
new_linear = copy.deepcopy(linear)
new_linear[slack_name] = sign
if var_added:
new_linear[slack_name] = sign
self._dst.quadratic_constraint(new_linear, quadratic, "==", rhs, name)

def _add_auto_slack_var_quadratic_constraint(self, linear, quadratic, sense, rhs, name):
Expand Down
17 changes: 17 additions & 0 deletions test/optimization/test_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -679,6 +679,23 @@ def test_ising_to_quadraticprogram_quadratic_deprecated(self):
quadratic.objective.quadratic.coefficients.toarray(), quadratic_matrix
)

def test_0var_range_inequality(self):
""" Test InequalityToEquality converter when the var_rang of the slack variable is 0"""
op = QuadraticProgram()
op.binary_var('x')
op.binary_var('y')
op.linear_constraint(linear={'x': 1, 'y': 1}, sense='LE', rhs=0, name='xy_leq1')
op.linear_constraint(linear={'x': 1, 'y': 1}, sense='GE', rhs=2, name='xy_geq1')
op.quadratic_constraint(quadratic={('x', 'x'): 1}, sense='LE', rhs=0, name='xy_leq2')
op.quadratic_constraint(quadratic={('x', 'y'): 1}, sense='GE', rhs=1, name='xy_geq2')
ineq2eq = InequalityToEquality()
new_op = ineq2eq.convert(op)
self.assertEqual(new_op.get_num_vars(), 2)
self.assertTrue(all(l_const.sense == Constraint.Sense.EQ
for l_const in new_op.linear_constraints))
self.assertTrue(all(q_const.sense == Constraint.Sense.EQ
for q_const in new_op.quadratic_constraints))

def test_integer_to_binary2(self):
"""Test integer to binary variables 2"""
mod = QuadraticProgram()
Expand Down