Skip to content
/ AAR Public

[Official Implementation] Acoustic Autoregressive Modeling 🔥

Notifications You must be signed in to change notification settings

qiuk2/AAR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Efficient Autoregressive Audio Modeling via Next-Scale Prediction

project page  arXiv  huggingface weights 

Efficient Autoregressive Audio Modeling via Next-Scale Prediction

Updates

  • (2024.08.24) Demo Released, tokenizer for other datasets will be available in two weeks.
  • (2024.08.22) Add SAT and AAR code, demo will be released soon.
  • (2024.08.20) Repo created. Code and checkpoints will be released this week.

Installation

  • Install all packages via pip3 install -r requirements.txt.

Dataset

We download our Audioset from the website https://research.google.com/audioset/ and collect it as

AudioSet
├── audioset_unbalanced_train_mp3
├── unbalanced_train_segments.csv
└── audioset_eval_raw_mp3

Scale-level audio tokenizer (SAT)

We are currently training large-scale SAT for music, audio, and speech. We expect the checkpoint will be ready and released in Sept.

Training

python3 train_SAT_mpi.py --config config/train/SAT.yaml --train_dir /path/to/audioset_unbalanced_train_mp3 --train_csv /path/to/csv --batch_size $bs --gpus $gpus --output_dir /path/to/save/ckpt --use_prefetcher True --resume latest

Inference

python3 inference_SAT.py --config config/inference/SAT.yaml --resume /path/to/ckpt.pth --test_dir /path/to/audioset_eval_raw_mp3 --batch_size $bs

Pre-trained model

We provide Audioset pre-trained SAT checkpoint as follows:

model # Scale # Tokens latent_dim FAD HF weights 🤗
SAT 16 455 64 1.09 SAT.pth
SAT 16 455 128 1.40 SAT.pth

Acoustic AutoRegressive Modeling (AAR)

Training

python3 train_AAR_mpi.py --config config/train/AAR.yaml --train_dir /path/to/audioset_unbalanced_train_mp3 --train_csv /path/to/csv --batch_size $bs --gpus $gpus --output_dir /path/to/save/ckpt --use_prefetcher True --resume latest --vqvae_pretrained_path /path/to/vae/ckpt --latent_dim $latent --dimension $dim 

Inference

python3 inference_AAR.py --config config/inference/AAR.yaml --aar_pretrained_path /path/to/aar.pth --vqvae_pretrained_path /path/to/vqvae.pth --test_dir /path/to/audioset_eval_raw_mp3 --batch_size $bs --output_dir /path/to/save

Pre-trained model

We provide Audioset pre-trained AAR checkpoint as follows:

model # Scale # Tokens latent_dim FAD HF weights 🤗
SAT 16 455 128 1.40 SAT.pth
AAR 16 455 128 6.01 AAR.pth

Citation

@misc{qiu2024efficient,
    title={Efficient Autoregressive Audio Modeling via Next-Scale Prediction},
    author={Kai Qiu and Xiang Li and Hao Chen and Jie Sun and Jinglu Wang and Zhe Lin and Marios Savvides and Bhiksha Raj},
    year={2024},
    eprint={2408.09027},
    archivePrefix={arXiv},
    primaryClass={cs.SD}
}

About

[Official Implementation] Acoustic Autoregressive Modeling 🔥

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages