Skip to content

This is the code of "Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification" in ACL 2017

Notifications You must be signed in to change notification settings

qkaren/Adversarial-Network-for-Discourse-ACL2017

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adversarial-Network-for-Implicit-Discourse-Relation-Classification-ACL-2017-

This is the code of "Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification" in ACL 2017

Abstract:

Implicit discourse relation classification is of great challenge due to the lack of con- nectives as strong linguistic cues, which motivates the use of annotated implicit connectives to improve the recognition. We propose a feature imitation frame- work in which an implicit relation net- work is driven to learn from another neu- ral network with access to connectives, and thus encouraged to extract similarly salient features for accurate classification. We develop an adversarial model to en- able an adaptive imitation scheme through competition between the implicit network and a rival feature discriminator. Our method effectively transfers discriminabil- ity of connectives to the implicit features, and achieves state-of-the-art performance on the PDTB benchmark.

URL of this paper: http://www.aclweb.org/anthology/P/P17/P17-1093.pdf

About

This is the code of "Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification" in ACL 2017

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages