-
Notifications
You must be signed in to change notification settings - Fork 116
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add
"hypergraph_union_find"
and "mw_parity_factor"
decoders to si…
…nter (#837) (This PR is just a merge-conflict-resolved version of #815) > This is a simple adaptation of the `mwpf' python package to sinter. Just copied the `_decoding_fusion.py` and modify it accordingly to let the decoder consider hyperedges. Tested using the `getting_started.ipynb` and they run decoding without a problem. > I haven't added any test cases for this, since I didn't find a test case for `fusion_blossom` decoder as well. Please let me know where should I put a basic test case for the new decoders! Editor's note: The existing unit tests automatically iterate over the defined decoders and run them through some basic sanity checks. Authored by: Yue Wu <yue.wu@yale.edu>
- Loading branch information
Showing
4 changed files
with
320 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
import math | ||
import pathlib | ||
from typing import Callable, List, TYPE_CHECKING, Tuple, Any, Optional | ||
|
||
import numpy as np | ||
import stim | ||
|
||
from sinter._decoding._decoding_decoder_class import Decoder, CompiledDecoder | ||
|
||
if TYPE_CHECKING: | ||
import mwpf | ||
|
||
|
||
def mwpf_import_error() -> ImportError: | ||
return ImportError( | ||
"The decoder 'MWPF' isn't installed\n" | ||
"To fix this, install the python package 'MWPF' into your environment.\n" | ||
"For example, if you are using pip, run `pip install MWPF~=0.1.1`.\n" | ||
) | ||
|
||
|
||
class MwpfCompiledDecoder(CompiledDecoder): | ||
def __init__( | ||
self, | ||
solver: "mwpf.SolverSerialJointSingleHair", | ||
fault_masks: "np.ndarray", | ||
num_dets: int, | ||
num_obs: int, | ||
): | ||
self.solver = solver | ||
self.fault_masks = fault_masks | ||
self.num_dets = num_dets | ||
self.num_obs = num_obs | ||
|
||
def decode_shots_bit_packed( | ||
self, | ||
*, | ||
bit_packed_detection_event_data: "np.ndarray", | ||
) -> "np.ndarray": | ||
num_shots = bit_packed_detection_event_data.shape[0] | ||
predictions = np.zeros(shape=(num_shots, self.num_obs), dtype=np.uint8) | ||
import mwpf | ||
|
||
for shot in range(num_shots): | ||
dets_sparse = np.flatnonzero( | ||
np.unpackbits( | ||
bit_packed_detection_event_data[shot], | ||
count=self.num_dets, | ||
bitorder="little", | ||
) | ||
) | ||
syndrome = mwpf.SyndromePattern(defect_vertices=dets_sparse) | ||
if self.solver is None: | ||
prediction = 0 | ||
else: | ||
self.solver.solve(syndrome) | ||
prediction = int( | ||
np.bitwise_xor.reduce(self.fault_masks[self.solver.subgraph()]) | ||
) | ||
self.solver.clear() | ||
predictions[shot] = np.packbits(prediction, bitorder="little") | ||
return predictions | ||
|
||
|
||
class MwpfDecoder(Decoder): | ||
"""Use MWPF to predict observables from detection events.""" | ||
|
||
def compile_decoder_for_dem( | ||
self, | ||
*, | ||
dem: "stim.DetectorErrorModel", | ||
decoder_cls: Any = None, # decoder class used to construct the MWPF decoder. | ||
# in the Rust implementation, all of them inherits from the class of `SolverSerialPlugins` | ||
# but just provide different plugins for optimizing the primal and/or dual solutions. | ||
# For example, `SolverSerialUnionFind` is the most basic solver without any plugin: it only | ||
# grows the clusters until the first valid solution appears; some more optimized solvers uses | ||
# one or more plugins to further optimize the solution, which requires longer decoding time. | ||
) -> CompiledDecoder: | ||
solver, fault_masks = detector_error_model_to_mwpf_solver_and_fault_masks( | ||
dem, decoder_cls=decoder_cls | ||
) | ||
return MwpfCompiledDecoder( | ||
solver, fault_masks, dem.num_detectors, dem.num_observables | ||
) | ||
|
||
def decode_via_files( | ||
self, | ||
*, | ||
num_shots: int, | ||
num_dets: int, | ||
num_obs: int, | ||
dem_path: pathlib.Path, | ||
dets_b8_in_path: pathlib.Path, | ||
obs_predictions_b8_out_path: pathlib.Path, | ||
tmp_dir: pathlib.Path, | ||
decoder_cls: Any = None, | ||
) -> None: | ||
import mwpf | ||
|
||
error_model = stim.DetectorErrorModel.from_file(dem_path) | ||
solver, fault_masks = detector_error_model_to_mwpf_solver_and_fault_masks( | ||
error_model, decoder_cls=decoder_cls | ||
) | ||
num_det_bytes = math.ceil(num_dets / 8) | ||
with open(dets_b8_in_path, "rb") as dets_in_f: | ||
with open(obs_predictions_b8_out_path, "wb") as obs_out_f: | ||
for _ in range(num_shots): | ||
dets_bit_packed = np.fromfile( | ||
dets_in_f, dtype=np.uint8, count=num_det_bytes | ||
) | ||
if dets_bit_packed.shape != (num_det_bytes,): | ||
raise IOError("Missing dets data.") | ||
dets_sparse = np.flatnonzero( | ||
np.unpackbits( | ||
dets_bit_packed, count=num_dets, bitorder="little" | ||
) | ||
) | ||
syndrome = mwpf.SyndromePattern(defect_vertices=dets_sparse) | ||
if solver is None: | ||
prediction = 0 | ||
else: | ||
solver.solve(syndrome) | ||
prediction = int( | ||
np.bitwise_xor.reduce(fault_masks[solver.subgraph()]) | ||
) | ||
solver.clear() | ||
obs_out_f.write( | ||
prediction.to_bytes((num_obs + 7) // 8, byteorder="little") | ||
) | ||
|
||
|
||
class HyperUFDecoder(MwpfDecoder): | ||
def compile_decoder_for_dem( | ||
self, *, dem: "stim.DetectorErrorModel" | ||
) -> CompiledDecoder: | ||
try: | ||
import mwpf | ||
except ImportError as ex: | ||
raise mwpf_import_error() from ex | ||
|
||
return super().compile_decoder_for_dem( | ||
dem=dem, decoder_cls=mwpf.SolverSerialUnionFind | ||
) | ||
|
||
def decode_via_files( | ||
self, | ||
*, | ||
num_shots: int, | ||
num_dets: int, | ||
num_obs: int, | ||
dem_path: pathlib.Path, | ||
dets_b8_in_path: pathlib.Path, | ||
obs_predictions_b8_out_path: pathlib.Path, | ||
tmp_dir: pathlib.Path, | ||
) -> None: | ||
try: | ||
import mwpf | ||
except ImportError as ex: | ||
raise mwpf_import_error() from ex | ||
|
||
return super().decode_via_files( | ||
num_shots=num_shots, | ||
num_dets=num_dets, | ||
num_obs=num_obs, | ||
dem_path=dem_path, | ||
dets_b8_in_path=dets_b8_in_path, | ||
obs_predictions_b8_out_path=obs_predictions_b8_out_path, | ||
tmp_dir=tmp_dir, | ||
decoder_cls=mwpf.SolverSerialUnionFind, | ||
) | ||
|
||
|
||
def iter_flatten_model( | ||
model: stim.DetectorErrorModel, | ||
handle_error: Callable[[float, List[int], List[int]], None], | ||
handle_detector_coords: Callable[[int, np.ndarray], None], | ||
): | ||
det_offset = 0 | ||
coords_offset = np.zeros(100, dtype=np.float64) | ||
|
||
def _helper(m: stim.DetectorErrorModel, reps: int): | ||
nonlocal det_offset | ||
nonlocal coords_offset | ||
for _ in range(reps): | ||
for instruction in m: | ||
if isinstance(instruction, stim.DemRepeatBlock): | ||
_helper(instruction.body_copy(), instruction.repeat_count) | ||
elif isinstance(instruction, stim.DemInstruction): | ||
if instruction.type == "error": | ||
dets: List[int] = [] | ||
frames: List[int] = [] | ||
t: stim.DemTarget | ||
p = instruction.args_copy()[0] | ||
for t in instruction.targets_copy(): | ||
if t.is_relative_detector_id(): | ||
dets.append(t.val + det_offset) | ||
elif t.is_logical_observable_id(): | ||
frames.append(t.val) | ||
handle_error(p, dets, frames) | ||
elif instruction.type == "shift_detectors": | ||
det_offset += instruction.targets_copy()[0] | ||
a = np.array(instruction.args_copy()) | ||
coords_offset[: len(a)] += a | ||
elif instruction.type == "detector": | ||
a = np.array(instruction.args_copy()) | ||
for t in instruction.targets_copy(): | ||
handle_detector_coords( | ||
t.val + det_offset, a + coords_offset[: len(a)] | ||
) | ||
elif instruction.type == "logical_observable": | ||
pass | ||
else: | ||
raise NotImplementedError() | ||
else: | ||
raise NotImplementedError() | ||
|
||
_helper(model, 1) | ||
|
||
|
||
def deduplicate_hyperedges( | ||
hyperedges: List[Tuple[List[int], float, int]] | ||
) -> List[Tuple[List[int], float, int]]: | ||
indices: dict[frozenset[int], int] = dict() | ||
result: List[Tuple[List[int], float, int]] = [] | ||
for dets, weight, mask in hyperedges: | ||
dets_set = frozenset(dets) | ||
if dets_set in indices: | ||
idx = indices[dets_set] | ||
p1 = 1 / (1 + math.exp(weight)) | ||
p2 = 1 / (1 + math.exp(result[idx][1])) | ||
p = p1 * (1 - p2) + p2 * (1 - p1) | ||
# not sure why would this fail? two hyperedges with different masks? | ||
# assert mask == result[idx][2], (result[idx], (dets, weight, mask)) | ||
result[idx] = (dets, math.log((1 - p) / p), result[idx][2]) | ||
else: | ||
indices[dets_set] = len(result) | ||
result.append((dets, weight, mask)) | ||
return result | ||
|
||
|
||
def detector_error_model_to_mwpf_solver_and_fault_masks( | ||
model: stim.DetectorErrorModel, decoder_cls: Any = None | ||
) -> Tuple[Optional["mwpf.SolverSerialJointSingleHair"], np.ndarray]: | ||
"""Convert a stim error model into a NetworkX graph.""" | ||
|
||
try: | ||
import mwpf | ||
except ImportError as ex: | ||
raise mwpf_import_error() from ex | ||
|
||
num_detectors = model.num_detectors | ||
is_detector_connected = np.full(num_detectors, False, dtype=bool) | ||
hyperedges: List[Tuple[List[int], float, int]] = [] | ||
|
||
def handle_error(p: float, dets: List[int], frame_changes: List[int]): | ||
if p == 0: | ||
return | ||
if len(dets) == 0: | ||
# No symptoms for this error. | ||
# Code probably has distance 1. | ||
# Accept it and keep going, though of course decoding will probably perform terribly. | ||
return | ||
if p > 0.5: | ||
# mwpf doesn't support negative edge weights. | ||
# approximate them as weight 0. | ||
p = 0.5 | ||
weight = math.log((1 - p) / p) | ||
mask = sum(1 << k for k in frame_changes) | ||
is_detector_connected[dets] = True | ||
hyperedges.append((dets, weight, mask)) | ||
|
||
def handle_detector_coords(detector: int, coords: np.ndarray): | ||
pass | ||
|
||
iter_flatten_model( | ||
model, | ||
handle_error=handle_error, | ||
handle_detector_coords=handle_detector_coords, | ||
) | ||
# mwpf package panic on duplicate edges, thus we need to handle them here | ||
hyperedges = deduplicate_hyperedges(hyperedges) | ||
|
||
# fix the input by connecting an edge to all isolated vertices | ||
for idx in range(num_detectors): | ||
if not is_detector_connected[idx]: | ||
hyperedges.append(([idx], 0, 0)) | ||
|
||
max_weight = max(1e-4, max((w for _, w, _ in hyperedges), default=1)) | ||
rescaled_edges = [ | ||
mwpf.HyperEdge(v, round(w * 2**10 / max_weight) * 2) for v, w, _ in hyperedges | ||
] | ||
fault_masks = np.array([e[2] for e in hyperedges], dtype=np.uint64) | ||
|
||
initializer = mwpf.SolverInitializer( | ||
num_detectors, # Total number of nodes. | ||
rescaled_edges, # Weighted edges. | ||
) | ||
|
||
if decoder_cls is None: | ||
# default to the solver with highest accuracy | ||
decoder_cls = mwpf.SolverSerialJointSingleHair | ||
return ( | ||
( | ||
decoder_cls(initializer) | ||
if num_detectors > 0 and len(rescaled_edges) > 0 | ||
else None | ||
), | ||
fault_masks, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters