Skip to content

qy1026/unsloth

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

63 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2-5x faster 50% less memory local LLM finetuning

  • Manual autograd engine - hand derived backprop steps.
  • 2x to 5x faster than QLoRA. 50% less memory usage.
  • All kernels written in OpenAI's Triton language.
  • 0% loss in accuracy - no approximation methods - all exact.
  • No change of hardware necessary. Supports NVIDIA GPUs since 2018+. Minimum CUDA Compute Capability 7.0 (V100, T4, Titan V, RTX 20, 30, 40x, A100, H100, L40 etc) Check your GPU
  • Flash Attention v2 support via Xformers.
  • NEW! Works on Linux and Windows via WSL.
  • NEW! Experimental support for DPO (Direct Preference Optimization)!
  • Supports 4bit and 16bit QLoRA / LoRA finetuning via bitsandbytes.
  • Train Slim Orca fully locally in 260 hours from 1301 hours (5x faster).
  • Open source version trains 5x faster or you can check out Unsloth Pro and Max codepaths for 30x faster training!
  1. Try our Colab examples for the Alpaca 52K dataset or the Slim Orca 518K dataset.
  2. Try our Kaggle example for the LAION OIG Chip2 dataset
  3. Join our Discord!

Installation Instructions - Conda

Unsloth currently only supports Linux distros and Pytorch >= 2.1.

conda install cudatoolkit xformers bitsandbytes pytorch pytorch-cuda=12.1 \
  -c pytorch -c nvidia -c xformers -c conda-forge -y
pip install "unsloth[kaggle] @ git+https://github.com/unslothai/unsloth.git"

Installation Instructions - Pip

  1. Find your CUDA version via
import torch; torch.version.cuda
  1. Select either cu118 for CUDA 11.8 or cu121 for CUDA 12.1
pip install "unsloth[cu118] @ git+https://github.com/unslothai/unsloth.git"
pip install "unsloth[cu121] @ git+https://github.com/unslothai/unsloth.git"
  1. We only support Pytorch 2.1: You can update Pytorch via Pip:
pip install --upgrade --force-reinstall --no-cache-dir torch triton \
  --index-url https://download.pytorch.org/whl/cu121

Change cu121 to cu118 for CUDA version 11.8 or 12.1. Go to https://pytorch.org/ to learn more.

  1. If you get errors, try the below first, then go back to step 1:
pip install --upgrade pip

Documentation

We support Huggingface's TRL, Trainer, Seq2SeqTrainer or even Pytorch code!

from unsloth import FastLlamaModel
import torch
max_seq_length = 2048 # Can change to any number <= 4096
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

# Load Llama model
model, tokenizer = FastLlamaModel.from_pretrained(
    model_name = "unsloth/llama-2-7b", # Supports any llama model eg meta-llama/Llama-2-7b-hf
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)

# Do model patching and add fast LoRA weights
model = FastLlamaModel.get_peft_model(
    model,
    r = 16,
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 16,
    lora_dropout = 0, # Currently only supports dropout = 0
    bias = "none",    # Currently only supports bias = "none"
    use_gradient_checkpointing = True,
    random_state = 3407,
    max_seq_length = max_seq_length,
)

trainer = .... Use Huggingface's Trainer and dataset loading (TRL, transformers etc)

If you trained a model with Unsloth, we made a cool sticker!!

DPO (Direct Preference Optimization) Experimental support

152334H hacked Unsloth to work with DPO via TRL!

  1. Hack the model's config.json to be llama model. Example gist.
  2. Use Unsloth for DPO for both base and reference models. Example gist.

Future Milestones and limitations

  1. Support sqrt gradient checkpointing which further slashes memory usage by 25%.
  2. Does not support non Llama models - we do so in the future.

Performance comparisons on 1 Tesla T4 GPU:

Time taken for 1 epoch

One Tesla T4 on Google Colab bsz = 2, ga = 4, max_grad_norm = 0.3, num_train_epochs = 1, seed = 3047, lr = 2e-4, wd = 0.01, optim = "adamw_8bit", schedule = "linear", schedule_steps = 10

System GPU Alpaca (52K) LAION OIG (210K) Open Assistant (10K) SlimOrca (518K)
Huggingface 1 T4 23h 15m 56h 28m 8h 38m 391h 41m
Unsloth Open 1 T4 13h 7m (1.8x) 31h 47m (1.8x) 4h 27m (1.9x) 240h 4m (1.6x)
Unsloth Pro 1 T4 3h 6m (7.5x) 5h 17m (10.7x) 1h 7m (7.7x) 59h 53m (6.5x)
Unsloth Max 1 T4 2h 39m (8.8x) 4h 31m (12.5x) 0h 58m (8.9x) 51h 30m (7.6x)

Peak Memory Usage

System GPU Alpaca (52K) LAION OIG (210K) Open Assistant (10K) SlimOrca (518K)
Huggingface 1 T4 7.3GB 5.9GB 14.0GB 13.3GB
Unsloth Open 1 T4 6.8GB 5.7GB 7.8GB 7.7GB
Unsloth Pro 1 T4 6.4GB 6.4GB 6.4GB 6.4GB
Unsloth Max 1 T4 11.4GB 12.4GB 11.9GB 14.4GB

Performance comparisons on 2 Tesla T4 GPUs via DDP:

Time taken for 1 epoch

Two Tesla T4s on Kaggle bsz = 2, ga = 4, max_grad_norm = 0.3, num_train_epochs = 1, seed = 3047, lr = 2e-4, wd = 0.01, optim = "adamw_8bit", schedule = "linear", schedule_steps = 10

System GPU Alpaca (52K) LAION OIG (210K) Open Assistant (10K) SlimOrca (518K) *
Huggingface 2 T4 84h 47m 163h 48m 30h 51m 1301h 24m *
Unsloth Pro 2 T4 3h 20m (25.4x) 5h 43m (28.7x) 1h 12m (25.7x) 71h 40m (18.1x) *
Unsloth Max 2 T4 3h 4m (27.6x) 5h 14m (31.3x) 1h 6m (28.1x) 54h 20m (23.9x) *

Peak Memory Usage on a Multi GPU System (2 GPUs)

System GPU Alpaca (52K) LAION OIG (210K) Open Assistant (10K) SlimOrca (518K) *
Huggingface 2 T4 8.4GB | 6GB 7.2GB | 5.3GB 14.3GB | 6.6GB 10.9GB | 5.9GB *
Unsloth Pro 2 T4 7.7GB | 4.9GB 7.5GB | 4.9GB 8.5GB | 4.9GB 6.2GB | 4.7GB *
Unsloth Max 2 T4 10.5GB | 5GB 10.6GB | 5GB 10.6GB | 5GB 10.5GB | 5GB *
  • Slim Orca bsz=1 for all benchmarks since bsz=2 OOMs. We can handle bsz=2, but we benchmark it with bsz=1 for consistency.

For replication of timings:

Troubleshooting

  1. Sometimes bitsandbytes or xformers does not link properly. Try running:
!ldconfig /usr/lib64-nvidia
  1. Windows is not supported as of yet - we rely on Xformers and Triton support, so until both packages support Windows officially, Unsloth will then support Windows.

  2. If it doesn't install - maybe try updating pip.

Credits

  1. RandomInternetPreson for confirming WSL support
  2. 152334H for experimental DPO support

About

5X faster 50% less memory LLM finetuning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%