Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: data quality for multiclass + fix class metrics #41

Merged
merged 5 commits into from
Jun 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions spark/jobs/current_job.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,10 @@
import orjson
from pyspark.sql.types import StructType, StructField, StringType

from jobs.metrics.statistics import calculate_statistics_current
from jobs.models.current_dataset import CurrentDataset
from jobs.models.reference_dataset import ReferenceDataset
from utils.current import CurrentMetricsService
from metrics.statistics import calculate_statistics_current
from models.current_dataset import CurrentDataset
from models.reference_dataset import ReferenceDataset
from utils.current_binary import CurrentMetricsService
from utils.models import JobStatus, ModelOut
from utils.db import update_job_status, write_to_db

Expand Down
200 changes: 200 additions & 0 deletions spark/jobs/metrics/data_quality_calculator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
from typing import List

import pyspark.sql.functions as F
from pandas import DataFrame

from models.data_quality import (
NumericalFeatureMetrics,
Histogram,
CategoricalFeatureMetrics,
ClassMetrics,
)
from utils.misc import split_dict
from utils.models import ModelOut
from utils.spark import check_not_null


class DataQualityCalculator:
@staticmethod
def numerical_metrics(
model: ModelOut, dataframe: DataFrame, dataframe_count: int
) -> List[NumericalFeatureMetrics]:
numerical_features = [
numerical.name for numerical in model.get_numerical_features()
]

mean_agg = [
(F.mean(check_not_null(x))).alias(f"{x}-mean") for x in numerical_features
]

max_agg = [
(F.max(check_not_null(x))).alias(f"{x}-max") for x in numerical_features
]

min_agg = [
(F.min(check_not_null(x))).alias(f"{x}-min") for x in numerical_features
]

median_agg = [
(F.median(check_not_null(x))).alias(f"{x}-median")
for x in numerical_features
]

perc_25_agg = [
(F.percentile(check_not_null(x), 0.25)).alias(f"{x}-perc_25")
for x in numerical_features
]

perc_75_agg = [
(F.percentile(check_not_null(x), 0.75)).alias(f"{x}-perc_75")
for x in numerical_features
]

std_agg = [
(F.std(check_not_null(x))).alias(f"{x}-std") for x in numerical_features
]

missing_values_agg = [
(F.count(F.when(F.col(x).isNull() | F.isnan(x), x))).alias(
f"{x}-missing_values"
)
for x in numerical_features
]

missing_values_perc_agg = [
(
(F.count(F.when(F.col(x).isNull() | F.isnan(x), x)) / dataframe_count)
* 100
).alias(f"{x}-missing_values_perc")
for x in numerical_features
]

# Global
global_stat = dataframe.select(numerical_features).agg(
*(
mean_agg
+ max_agg
+ min_agg
+ median_agg
+ perc_25_agg
+ perc_75_agg
+ std_agg
+ missing_values_agg
+ missing_values_perc_agg
)
)

global_dict = global_stat.toPandas().iloc[0].to_dict()
global_data_quality = split_dict(global_dict)

# TODO probably not so efficient but I haven't found another way
histograms = {
column: dataframe.select(column).rdd.flatMap(lambda x: x).histogram(10)
for column in numerical_features
}

dict_of_hist = {
k: Histogram(buckets=v[0], reference_values=v[1])
for k, v in histograms.items()
}

numerical_features_metrics = [
NumericalFeatureMetrics.from_dict(
feature_name,
metrics,
histogram=dict_of_hist.get(feature_name),
)
for feature_name, metrics in global_data_quality.items()
]

return numerical_features_metrics

@staticmethod
def categorical_metrics(
model: ModelOut, dataframe: DataFrame, dataframe_count: int
) -> List[CategoricalFeatureMetrics]:
categorical_features = [
categorical.name for categorical in model.get_categorical_features()
]

missing_values_agg = [
(F.count(F.when(F.col(x).isNull(), x))).alias(f"{x}-missing_values")
for x in categorical_features
]

missing_values_perc_agg = [
((F.count(F.when(F.col(x).isNull(), x)) / dataframe_count) * 100).alias(
f"{x}-missing_values_perc"
)
for x in categorical_features
]

distinct_values = [
(F.countDistinct(check_not_null(x))).alias(f"{x}-distinct_values")
for x in categorical_features
]

global_stat = dataframe.select(categorical_features).agg(
*(missing_values_agg + missing_values_perc_agg + distinct_values)
)

global_dict = global_stat.toPandas().iloc[0].to_dict()
global_data_quality = split_dict(global_dict)

# FIXME by design this is not efficient
# FIXME understand if we want to divide by whole or by number of not null

count_distinct_categories = {
column: dict(
dataframe.select(column)
.filter(F.isnotnull(column))
.groupBy(column)
.agg(*[F.count(check_not_null(column)).alias("count")])
.withColumn(
"freq",
F.col("count") / dataframe_count,
)
.toPandas()
.set_index(column)
.to_dict()
)
for column in categorical_features
}

categorical_features_metrics = [
CategoricalFeatureMetrics.from_dict(
feature_name=feature_name,
global_metrics=metrics,
categories_metrics=count_distinct_categories.get(feature_name),
)
for feature_name, metrics in global_data_quality.items()
]

return categorical_features_metrics

@staticmethod
def class_metrics(
class_column: str, dataframe: DataFrame, dataframe_count: int
) -> List[ClassMetrics]:
class_metrics_dict = (
dataframe.select(class_column)
.filter(F.isnotnull(class_column))
.groupBy(class_column)
.agg(*[F.count(check_not_null(class_column)).alias("count")])
.withColumn(
"percentage",
(F.col("count") / dataframe_count) * 100,
)
.toPandas()
.set_index(class_column)
.to_dict(orient="index")
)

return [
ClassMetrics(
name=str(label),
count=metrics["count"],
percentage=metrics["percentage"],
)
for label, metrics in class_metrics_dict.items()
]
1 change: 1 addition & 0 deletions spark/jobs/metrics/statistics.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@


# FIXME use pydantic struct like data quality
# FIXME generalize to one method
def calculate_statistics_reference(
reference_dataset: ReferenceDataset,
) -> dict[str, float]:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,6 @@ def from_dict(
cls,
feature_name: str,
global_dict: Dict,
true_feature_dict: Dict,
false_feature_dict: Dict,
histogram: Histogram,
) -> "NumericalFeatureMetrics":
return NumericalFeatureMetrics(
Expand All @@ -76,26 +74,7 @@ def from_dict(
perc_25=global_dict.get("perc_25"),
perc_75=global_dict.get("perc_75"),
),
class_median_metrics=[
ClassMedianMetrics(
name="true",
mean=true_feature_dict.get("mean"),
median_metrics=MedianMetrics(
median=true_feature_dict.get("median"),
perc_25=true_feature_dict.get("perc_25"),
perc_75=true_feature_dict.get("perc_75"),
),
),
ClassMedianMetrics(
name="false",
mean=false_feature_dict.get("mean"),
median_metrics=MedianMetrics(
median=false_feature_dict.get("median"),
perc_25=false_feature_dict.get("perc_25"),
perc_75=false_feature_dict.get("perc_75"),
),
),
],
class_median_metrics=[],
histogram=histogram,
)

Expand Down Expand Up @@ -150,3 +129,9 @@ class BinaryClassDataQuality(BaseModel):
n_observations: int
class_metrics: List[ClassMetrics]
feature_metrics: List[FeatureMetrics]


class MultiClassDataQuality(BaseModel):
n_observations: int
class_metrics: List[ClassMetrics]
feature_metrics: List[FeatureMetrics]
29 changes: 29 additions & 0 deletions spark/jobs/models/reference_dataset.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from typing import List

from pyspark.ml.feature import StringIndexer
from pyspark.sql import DataFrame
from pyspark.sql.types import DoubleType, StructField, StructType

Expand Down Expand Up @@ -90,3 +91,31 @@ def get_all_variables(self) -> List[ColumnDefinition]:
+ [self.model.timestamp]
+ self.model.outputs.output
)

def get_string_indexed_dataframe(self):
"""
Source: https://stackoverflow.com/questions/65911146/how-to-transform-multiple-categorical-columns-to-integers-maintaining-shared-val
"""
predictions_df = self.reference.select(
self.model.outputs.prediction.name
).withColumnRenamed(self.model.outputs.prediction.name, "classes")
target_df = self.reference.select(self.model.target.name).withColumnRenamed(
self.model.target.name, "classes"
)
prediction_target_df = predictions_df.union(target_df)
indexer = StringIndexer(inputCol="classes", outputCol="classes_index")
indexer_model = indexer.fit(prediction_target_df)
indexer_prediction = indexer_model.setInputCol(
self.model.outputs.prediction.name
).setOutputCol(f"{self.model.outputs.prediction.name}-idx")
indexed_prediction_df = indexer_prediction.transform(self.reference)
indexer_target = indexer_model.setInputCol(self.model.target.name).setOutputCol(
f"{self.model.target.name}-idx"
)
indexed_target_df = indexer_target.transform(indexed_prediction_df)

index_label_map = {
str(float(index)): label
for index, label in enumerate(indexer_model.labelsArray[0])
}
return index_label_map, indexed_target_df
16 changes: 13 additions & 3 deletions spark/jobs/reference_job.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,14 +7,16 @@

from metrics.statistics import calculate_statistics_reference
from models.reference_dataset import ReferenceDataset
from utils.reference import ReferenceMetricsService
from utils.reference_binary import ReferenceMetricsService
from utils.models import JobStatus, ModelOut, ModelType
from utils.db import update_job_status, write_to_db

from pyspark.sql import SparkSession

import logging

from utils.reference_multiclass import ReferenceMetricsMulticlassService


def main(
spark_session: SparkSession,
Expand Down Expand Up @@ -46,12 +48,13 @@ def main(
raw_dataframe = spark_session.read.csv(reference_dataset_path, header=True)
reference_dataset = ReferenceDataset(model=model, raw_dataframe=raw_dataframe)

metrics_service = ReferenceMetricsService(reference_dataset.reference, model=model)

complete_record = {"UUID": str(uuid.uuid4()), "REFERENCE_UUID": reference_uuid}

match model.model_type:
case ModelType.BINARY:
metrics_service = ReferenceMetricsService(
reference_dataset.reference, model=model
)
model_quality = metrics_service.calculate_model_quality()
statistics = calculate_statistics_reference(reference_dataset)
data_quality = metrics_service.calculate_data_quality()
Expand All @@ -64,8 +67,15 @@ def main(
)
case ModelType.MULTI_CLASS:
# TODO add data quality and model quality
metrics_service = ReferenceMetricsMulticlassService(
reference=reference_dataset
)
statistics = calculate_statistics_reference(reference_dataset)
data_quality = metrics_service.calculate_data_quality()
complete_record["STATISTICS"] = orjson.dumps(statistics).decode("utf-8")
complete_record["DATA_QUALITY"] = data_quality.model_dump_json(
serialize_as_any=True
)

schema = StructType(
[
Expand Down
Loading