Skip to content

raember/yolov5r_autodidact

 
 

Repository files navigation

Autodidact project and paper code

arxiv.org

This fork was used for the Autodidact project which resulted in the paper Video object detection for privacy-preserving patient monitoring in intensive care. The paper was accepted and presented at the 10th Swiss Conference on Data Science (SDS2023).

BibTeX reference:

@InProceedings{Emberger2023,
  author    = {Raphael Emberger and Jens Michael Boss and Daniel Baumann and Marko Seric and Shufan Huo and Lukas Tuggener Emanuela Keller and Thilo Stadelmann},
  booktitle = {2023 10th Swiss Conference on Data Science (SDS)},
  title     = {Video object detection for privacy-preserving patient monitoring in intensive care},
  year      = {2023},
  month     = jun,
  doi       = {10.21256/zhaw-27810},
}


CI CPU testing YOLOv5 Citation Docker Pulls
Open In Colab Open In Kaggle Join Forum


YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

Documentation

See the YOLOv5 Docs for full documentation on training, testing and deployment.

Quick Start Examples

Install

Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
Inference

Inference with YOLOv5 and PyTorch Hub. Models automatically download from the latest YOLOv5 release.

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            img.jpg  # image
                            vid.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16
Tutorials

Environments

Get started in seconds with our verified environments. Click each icon below for details.

Integrations

Weights and Biases Roboflow ⭐ NEW
Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & Biases Label and export your custom datasets directly to YOLOv5 for training with Roboflow

Why YOLOv5

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand)
  • COCO AP val denotes mAP@0.5:0.95 metric measured on the 5000-image COCO val2017 dataset over various inference sizes from 256 to 1536.
  • GPU Speed measures average inference time per image on COCO val2017 dataset using a AWS p3.2xlarge V100 instance at batch-size 32.
  • EfficientDet data from google/automl at batch size 8.
  • Reproduce by python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt

Pretrained Checkpoints

Model size
(pixels)
mAPval
0.5:0.95
mAPval
0.5
Speed
CPU b1
(ms)
Speed
V100 b1
(ms)
Speed
V100 b32
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5n 640 28.4 46.0 45 6.3 0.6 1.9 4.5
YOLOv5s 640 37.2 56.0 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.2 63.9 224 8.2 1.7 21.2 49.0
YOLOv5l 640 48.8 67.2 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7
YOLOv5n6 1280 34.0 50.7 153 8.1 2.1 3.2 4.6
YOLOv5s6 1280 44.5 63.0 385 8.2 3.6 16.8 12.6
YOLOv5m6 1280 51.0 69.0 887 11.1 6.8 35.7 50.0
YOLOv5l6 1280 53.6 71.6 1784 15.8 10.5 76.8 111.4
YOLOv5x6
+ TTA
1280
1536
54.7
55.4
72.4
72.3
3136
-
26.2
-
19.4
-
140.7
-
209.8
-
Table Notes (click to expand)
  • All checkpoints are trained to 300 epochs with default settings and hyperparameters.
  • mAPval values are for single-model single-scale on COCO val2017 dataset.
    Reproduce by python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • Speed averaged over COCO val images using a AWS p3.2xlarge instance. NMS times (~1 ms/img) not included.
    Reproduce by python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
  • TTA Test Time Augmentation includes reflection and scale augmentations.
    Reproduce by python val.py --data coco.yaml --img 1536 --iou 0.7 --augment

Contribute

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!

Contact

For YOLOv5 bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please visit https://ultralytics.com/contact.


About

rotated bbox detection. inspired by https://github.com/hukaixuan19970627/YOLOv5_DOTA_OBB, thanks hukaixuan19970627.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 60.0%
  • Python 39.3%
  • Other 0.7%