SketchColorization (Web)
- torch==1.7.1
- torchvision==0.82
- numpy==1.19.1
- tensorboard==2.3.0
- tqdm==4.28.1
- opencv_python==4.4.0.46
- scipy==1.5.2
- Pillow==7.2.0
- scikit-learn==0.23.2
- fbs==0.9.0
- onnx==1.7.0
- onnxruntime==1.5.1
- PyQt5==5.15.1
- QDarkStyle==2.8.1
-
We crawled over 700,000 illustrations from shuushuu-image-board and used them for learning.
-
We have filtered out noise such as extreme aspect ratio, black and white image, low / high key images and etc.
-
The learning sequence is 1. autoencoder, 2. draft, 3. colorization.
-
set hyperparameters.yml, e.g. paths (image_path and line_path, logdir)
-
Start learning after adjusting hyperparameters for each learning step
- run 'python main.py -M {autoencoder | draft | colorization}'
- download pretrained onnx model SketchColorizationModel.onnx
- Copy model to "app/src/main/resources/base/SketchColorizationModel.onnx"
- cd app
- fbs run