Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor hash_reduce_by_row #14095

Merged
merged 19 commits into from
Sep 13, 2023
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 164 additions & 0 deletions cpp/src/reductions/hash_reduce_by_row.cuh
ttnghia marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
ttnghia marked this conversation as resolved.
Show resolved Hide resolved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <stream_compaction/stream_compaction_common.cuh>

#include <cudf/table/experimental/row_operators.cuh>
#include <cudf/types.hpp>

#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>

#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/uninitialized_fill.h>

namespace cudf::detail {

/**
* @brief The base struct for customized reduction functor to perform reduce-by-key with keys are
* rows that compared equal.
*
* TODO: We need to switch to use `static_reduction_map` when it is ready
* (https://github.com/NVIDIA/cuCollections/pull/98).
*/
template <typename MapView, typename KeyHasher, typename KeyEqual, typename OutputType>
struct reduce_by_row_fn_base {
protected:
MapView const d_map;
KeyHasher const d_hasher;
KeyEqual const d_equal;
OutputType* const d_output;

reduce_by_row_fn_base(MapView const& d_map,
KeyHasher const& d_hasher,
KeyEqual const& d_equal,
OutputType* const d_output)
: d_map{d_map}, d_hasher{d_hasher}, d_equal{d_equal}, d_output{d_output}
{
}

/**
* @brief Return a pointer to the output array at the given index.
*
* @param idx The access index
* @return A pointer to the given index in the output array
*/
__device__ OutputType* get_output_ptr(size_type const idx) const
{
auto const iter = d_map.find(idx, d_hasher, d_equal);

if (iter != d_map.end()) {
// Only one (undetermined) index value of the duplicate rows could be inserted into the map.
// As such, looking up for all indices of duplicate rows always returns the same value.
auto const inserted_idx = iter->second.load(cuda::std::memory_order_relaxed);

// All duplicate rows will have concurrent access to this same output slot.
return &d_output[inserted_idx];
} else {
// All input `idx` values have been inserted into the map before.
// Thus, searching for an `idx` key resulting in the `end()` iterator only happens if
// `d_equal(idx, idx) == false`.
// Such situations are due to comparing nulls or NaNs which are considered as always unequal.
// In those cases, all rows containing nulls or NaNs are distinct. Just return their direct
// output slot.
return &d_output[idx];
}
}
};

/**
* @brief Perform a reduction on groups of rows that are compared equal.
*
* This is essentially a reduce-by-key operation with keys are non-contiguous rows and are compared
* equal. A hash table is used to find groups of equal rows.
*
* At the beginning of the operation, the entire output array is filled with a value given by
* the `init` parameter. Then, the reduction result for each row group is written into the output
* array at the index of an unspecified row in the group.
*
* @tparam ReduceFuncBuilder The builder class that must have a `build()` method returning a
* reduction functor derived from `reduce_by_row_fn_base`
* @tparam OutputType Type of the reduction results
* @param map The auxiliary map to perform reduction
* @param preprocessed_input The preprocessed of the input rows for computing row hashing and row
* comparisons
* @param num_rows The number of all input rows
* @param has_nulls Indicate whether the input rows has any nulls at any nested levels
* @param has_nested_columns Indicates whether the input table has any nested columns
* @param nulls_equal Flag to specify whether null elements should be considered as equal
* @param nans_equal Flag to specify whether NaN values in floating point column should be
* considered equal.
* @param init The initial value for reduction of each row group
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned vector
* @return A device_uvector containing the reduction results
*/
template <typename ReduceFuncBuilder, typename OutputType>
rmm::device_uvector<size_type> hash_reduce_by_row(
hash_map_type const& map,
std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input,
size_type num_rows,
cudf::nullate::DYNAMIC has_nulls,
bool has_nested_columns,
null_equality nulls_equal,
nan_equality nans_equal,
ReduceFuncBuilder func_builder,
OutputType init,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto const map_dview = map.get_device_view();
auto const row_hasher = cudf::experimental::row::hash::row_hasher(preprocessed_input);
auto const key_hasher = experimental::compaction_hash(row_hasher.device_hasher(has_nulls));
auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input);

auto reduction_results = rmm::device_uvector<OutputType>(num_rows, stream, mr);
thrust::uninitialized_fill(
rmm::exec_policy(stream), reduction_results.begin(), reduction_results.end(), init);

auto const reduce_by_row = [&](auto const value_comp) {
if (has_nested_columns) {
auto const key_equal = row_comp.equal_to<true>(has_nulls, nulls_equal, value_comp);
thrust::for_each(
rmm::exec_policy(stream),
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(num_rows),
func_builder.build(map_dview, key_hasher, key_equal, reduction_results.begin()));
} else {
auto const key_equal = row_comp.equal_to<false>(has_nulls, nulls_equal, value_comp);
thrust::for_each(
rmm::exec_policy(stream),
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(num_rows),
func_builder.build(map_dview, key_hasher, key_equal, reduction_results.begin()));
}
};

if (nans_equal == nan_equality::ALL_EQUAL) {
using nan_equal_comparator =
cudf::experimental::row::equality::nan_equal_physical_equality_comparator;
reduce_by_row(nan_equal_comparator{});
} else {
using nan_unequal_comparator = cudf::experimental::row::equality::physical_equality_comparator;
reduce_by_row(nan_unequal_comparator{});
}

return reduction_results;
}

} // namespace cudf::detail
23 changes: 12 additions & 11 deletions cpp/src/stream_compaction/distinct.cu
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@
* limitations under the License.
*/

#include "distinct_reduce.cuh"
#include "distinct_reduce.hpp"
#include "stream_compaction_common.cuh"

#include <cudf/column/column_view.hpp>
#include <cudf/detail/gather.hpp>
Expand Down Expand Up @@ -96,16 +97,16 @@ rmm::device_uvector<size_type> get_distinct_indices(table_view const& input,
}

// For other keep options, reduce by row on rows that compare equal.
auto const reduction_results = hash_reduce_by_row(map,
std::move(preprocessed_input),
input.num_rows(),
has_nulls,
has_nested_columns,
keep,
nulls_equal,
nans_equal,
stream,
rmm::mr::get_current_device_resource());
auto const reduction_results = distinct_reduce(map,
std::move(preprocessed_input),
input.num_rows(),
has_nulls,
has_nested_columns,
keep,
nulls_equal,
nans_equal,
stream,
rmm::mr::get_current_device_resource());

// Extract the desired output indices from reduction results.
auto const map_end = [&] {
Expand Down
123 changes: 40 additions & 83 deletions cpp/src/stream_compaction/distinct_reduce.cu
Original file line number Diff line number Diff line change
Expand Up @@ -14,41 +14,34 @@
* limitations under the License.
*/

#include "distinct_reduce.cuh"
#include "distinct_reduce.hpp"

#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/uninitialized_fill.h>
#include <reductions/hash_reduce_by_row.cuh>

namespace cudf::detail {

namespace {
/**
* @brief A functor to perform reduce-by-key with keys are rows that compared equal.
*
* TODO: We need to switch to use `static_reduction_map` when it is ready
* (https://github.com/NVIDIA/cuCollections/pull/98).
* @brief The functor to find the first/last/none duplicate row for rows that compared equal.
*/
template <typename MapView, typename KeyHasher, typename KeyEqual>
struct reduce_by_row_fn {
MapView const d_map;
KeyHasher const d_hasher;
KeyEqual const d_equal;
struct distinct_reduce_fn : reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, size_type> {
duplicate_keep_option const keep;
size_type* const d_output;

reduce_by_row_fn(MapView const& d_map,
KeyHasher const& d_hasher,
KeyEqual const& d_equal,
duplicate_keep_option const keep,
size_type* const d_output)
: d_map{d_map}, d_hasher{d_hasher}, d_equal{d_equal}, keep{keep}, d_output{d_output}
distinct_reduce_fn(MapView const& d_map,
KeyHasher const& d_hasher,
KeyEqual const& d_equal,
duplicate_keep_option const keep,
size_type* const d_output)
: reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, size_type>(
d_map, d_hasher, d_equal, d_output),
keep{keep}
{
}

__device__ void operator()(size_type const idx) const
{
auto const out_ptr = get_output_ptr(idx);
auto const out_ptr = this->get_output_ptr(idx);

if (keep == duplicate_keep_option::KEEP_FIRST) {
// Store the smallest index of all rows that are equal.
Expand All @@ -61,34 +54,29 @@ struct reduce_by_row_fn {
atomicAdd(out_ptr, size_type{1});
}
}
};

private:
__device__ size_type* get_output_ptr(size_type const idx) const
/**
* @brief The builder to construct an instance of `distinct_reduce_fn` functor base on the given
* value of the `duplicate_keep_option` member variable.
*/
struct reduce_func_builder {
duplicate_keep_option keep;

template <typename MapView, typename KeyHasher, typename KeyEqual>
auto build(MapView const& d_map,
KeyHasher const& d_hasher,
KeyEqual const& d_equal,
size_type* const d_output)
{
auto const iter = d_map.find(idx, d_hasher, d_equal);

if (iter != d_map.end()) {
// Only one index value of the duplicate rows could be inserted into the map.
// As such, looking up for all indices of duplicate rows always returns the same value.
auto const inserted_idx = iter->second.load(cuda::std::memory_order_relaxed);

// All duplicate rows will have concurrent access to this same output slot.
return &d_output[inserted_idx];
} else {
// All input `idx` values have been inserted into the map before.
// Thus, searching for an `idx` key resulting in the `end()` iterator only happens if
// `d_equal(idx, idx) == false`.
// Such situations are due to comparing nulls or NaNs which are considered as always unequal.
// In those cases, all rows containing nulls or NaNs are distinct. Just return their direct
// output slot.
return &d_output[idx];
}
return distinct_reduce_fn<MapView, KeyHasher, KeyEqual>{
d_map, d_hasher, d_equal, keep, d_output};
}
};

} // namespace

rmm::device_uvector<size_type> hash_reduce_by_row(
rmm::device_uvector<size_type> distinct_reduce(
hash_map_type const& map,
std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input,
size_type num_rows,
Expand All @@ -103,48 +91,17 @@ rmm::device_uvector<size_type> hash_reduce_by_row(
CUDF_EXPECTS(keep != duplicate_keep_option::KEEP_ANY,
"This function should not be called with KEEP_ANY");

auto reduction_results = rmm::device_uvector<size_type>(num_rows, stream, mr);

thrust::uninitialized_fill(rmm::exec_policy(stream),
reduction_results.begin(),
reduction_results.end(),
reduction_init_value(keep));

auto const row_hasher = cudf::experimental::row::hash::row_hasher(preprocessed_input);
auto const key_hasher = experimental::compaction_hash(row_hasher.device_hasher(has_nulls));

auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input);

auto const reduce_by_row = [&](auto const value_comp) {
if (has_nested_columns) {
auto const key_equal = row_comp.equal_to<true>(has_nulls, nulls_equal, value_comp);
thrust::for_each(
rmm::exec_policy(stream),
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(num_rows),
reduce_by_row_fn{
map.get_device_view(), key_hasher, key_equal, keep, reduction_results.begin()});
} else {
auto const key_equal = row_comp.equal_to<false>(has_nulls, nulls_equal, value_comp);
thrust::for_each(
rmm::exec_policy(stream),
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(num_rows),
reduce_by_row_fn{
map.get_device_view(), key_hasher, key_equal, keep, reduction_results.begin()});
}
};

if (nans_equal == nan_equality::ALL_EQUAL) {
using nan_equal_comparator =
cudf::experimental::row::equality::nan_equal_physical_equality_comparator;
reduce_by_row(nan_equal_comparator{});
} else {
using nan_unequal_comparator = cudf::experimental::row::equality::physical_equality_comparator;
reduce_by_row(nan_unequal_comparator{});
}

return reduction_results;
return hash_reduce_by_row(map,
preprocessed_input,
num_rows,
has_nulls,
has_nested_columns,
nulls_equal,
nans_equal,
reduce_func_builder{keep},
reduction_init_value(keep),
stream,
mr);
}

} // namespace cudf::detail
Loading
Loading