Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[REVIEW] Fix Stochastic Gradient Descent Example #3136

Merged
merged 3 commits into from
Nov 17, 2020
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 11 additions & 11 deletions python/cuml/solvers/sgd.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -137,15 +137,15 @@ class SGD(Base):
import cudf
from cuml.solvers import SGD as cumlSGD
X = cudf.DataFrame()
X['col1'] = np.array([1,1,2,2], dtype = np.float32)
X['col2'] = np.array([1,2,2,3], dtype = np.float32)
X['col1'] = np.array([1,1,2,2], dtype=np.float32)
X['col2'] = np.array([1,2,2,3], dtype=np.float32)
y = cudf.Series(np.array([1, 1, 2, 2], dtype=np.float32))
pred_data = cudf.DataFrame()
pred_data['col1'] = np.asarray([3, 2], dtype=dtype)
pred_data['col2'] = np.asarray([5, 5], dtype=dtype)
cu_sgd = cumlSGD(learning_rate=lrate, eta0=0.005, epochs=2000,
pred_data['col1'] = np.asarray([3, 2], dtype=np.float32)
pred_data['col2'] = np.asarray([5, 5], dtype=np.float32)
cu_sgd = cumlSGD(learning_rate='constant', eta0=0.005, epochs=2000,
fit_intercept=True, batch_size=2,
tol=0.0, penalty=penalty, loss=loss)
tol=0.0, penalty='none', loss='squared_loss')
cu_sgd.fit(X, y)
cu_pred = cu_sgd.predict(pred_data).to_array()
print(" cuML intercept : ", cu_sgd.intercept_)
Expand All @@ -156,11 +156,11 @@ class SGD(Base):

.. code-block:: python

cuML intercept : 0.004561662673950195
cuML coef : 0 0.9834546
1 0.010128272
dtype: float32
cuML predictions : [3.0055666 2.0221121]
cuML intercept : 0.0041877031326293945
cuML coef : 0 0.984174
1 0.009776
dtype: float32
cuML predictions : [3.005588 2.0214138]


Parameters
Expand Down