Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix train_test_split for string columns #6088

Merged
merged 5 commits into from
Oct 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions python/cuml/cuml/cluster/kmeans.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ from cuml.internals.safe_imports import cpu_only_import
np = cpu_only_import('numpy')
from cuml.internals.safe_imports import gpu_only_import
rmm = gpu_only_import('rmm')
from cuml.internals.safe_imports import safe_import_from, return_false
import typing

IF GPUBUILD == 1:
Expand All @@ -46,7 +47,10 @@ from cuml.common import input_to_cuml_array
from cuml.internals.api_decorators import device_interop_preparation
from cuml.internals.api_decorators import enable_device_interop

from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
# from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
_openmp_effective_n_threads = safe_import_from(
"sklearn.utils._openmp_helpers", "_openmp_effective_n_threads", alt=return_false
)


class KMeans(UniversalBase,
Expand Down Expand Up @@ -235,7 +239,10 @@ class KMeans(UniversalBase,
self.cluster_centers_ = None

# For sklearn interoperability
self._n_threads = _openmp_effective_n_threads()
if _openmp_effective_n_threads():
self._n_threads = _openmp_effective_n_threads()
else:
self._n_threads = 1

# cuPy does not allow comparing with string. See issue #2372
init_str = init if isinstance(init, str) else None
Expand Down
15 changes: 8 additions & 7 deletions python/cuml/cuml/internals/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -1251,13 +1251,14 @@ def array_to_memory_order(arr, default="C"):
return arr.order
except AttributeError:
pass
try:
array_interface = arr.__cuda_array_interface__
except AttributeError:
try:
array_interface = arr.__array_interface__
except AttributeError:
return array_to_memory_order(CumlArray.from_input(arr, order="K"))
array_interface = getattr(
arr,
"__cuda_array_interface__",
getattr(arr, "__array_interface__", False),
)
if not array_interface:
return array_to_memory_order(CumlArray.from_input(arr, order="K"))

strides = array_interface.get("strides", None)
if strides is None:
try:
Expand Down
106 changes: 57 additions & 49 deletions python/cuml/cuml/model_selection/_split.py
Original file line number Diff line number Diff line change
Expand Up @@ -265,8 +265,18 @@ def train_test_split(
string"
)

x_order = array_to_memory_order(X)
X_arr, X_row, *_ = input_to_cuml_array(X, order=x_order)
all_numeric = True
if isinstance(X, cudf.DataFrame):
all_numeric = all(
cudf.api.types.is_numeric_dtype(X[col]) for col in X.columns
)

if all_numeric:
x_order = array_to_memory_order(X)
X_arr, X_row, *_ = input_to_cuml_array(X, order=x_order)
else:
x_order = "F"
X_arr, X_row = X, X.shape[0]
if y is not None:
y_order = array_to_memory_order(y)
y_arr, y_row, *_ = input_to_cuml_array(y, order=y_order)
Expand Down Expand Up @@ -363,55 +373,53 @@ def train_test_split(
train_indices = range(0, train_size)
test_indices = range(-1 * test_size, 0)

# Gather from indices
X_train = X_arr[train_indices]
X_test = X_arr[test_indices]
if y is not None:
y_train = y_arr[train_indices]
y_test = y_arr[test_indices]

# Coerce output to original input type
if ty := determine_df_obj_type(X):
x_type = ty
else:
x_type = determine_array_type(X)

if ty := determine_df_obj_type(y):
y_type = ty
else:
y_type = determine_array_type(y)

if x_type in ("series", "dataframe"):
X_train = output_to_df_obj_like(X_train, X, x_type)
X_test = output_to_df_obj_like(X_test, X, x_type)

if determine_array_type(X.index) == "pandas":
if isinstance(train_indices, cp.ndarray):
train_indices = train_indices.get()
if isinstance(test_indices, cp.ndarray):
test_indices = test_indices.get()
if all_numeric:
# Gather from indices
X_train = X_arr[train_indices]
X_test = X_arr[test_indices]
if y is not None:
y_train = y_arr[train_indices]
y_test = y_arr[test_indices]

# Coerce output to original input type
x_type = determine_df_obj_type(X) or determine_array_type(X)
if y is not None:
y_type = determine_df_obj_type(y) or determine_array_type(y)

def _process_df_objs(
df, df_type, df_train, df_test, train_indices, test_indices
):
if df_type in {"series", "dataframe"}:
df_train = output_to_df_obj_like(df_train, df, df_type)
df_test = output_to_df_obj_like(df_test, df, df_type)

if determine_array_type(df.index) == "pandas":
if isinstance(train_indices, cp.ndarray):
train_indices = train_indices.get()
if isinstance(test_indices, cp.ndarray):
test_indices = test_indices.get()

df_train.index = df.index[train_indices]
df_test.index = df.index[test_indices]
else:
df_train = df_train.to_output(df_type)
df_test = df_test.to_output(df_type)
return df_train, df_test

X_train, X_test = _process_df_objs(
X, x_type, X_train, X_test, train_indices, test_indices
)
if y is not None:
y_train, y_test = _process_df_objs(
y, y_type, y_train, y_test, train_indices, test_indices
)

X_train.index = X.index[train_indices]
X_test.index = X.index[test_indices]
else:
X_train = X_train.to_output(x_type)
X_test = X_test.to_output(x_type)

if y_type in ("series", "dataframe"):
y_train = output_to_df_obj_like(y_train, y, y_type)
y_test = output_to_df_obj_like(y_test, y, y_type)

if determine_array_type(y.index) == "pandas":
if isinstance(train_indices, cp.ndarray):
train_indices = train_indices.get()
if isinstance(test_indices, cp.ndarray):
test_indices = test_indices.get()

y_train.index = y.index[train_indices]
y_test.index = y.index[test_indices]
elif y_type is not None:
y_train = y_train.to_output(y_type)
y_test = y_test.to_output(y_type)
X_train = X_arr.iloc[train_indices]
X_test = X_arr.iloc[test_indices]
if y is not None:
y_train = y_arr[train_indices]
y_test = y_arr[test_indices]

if y is not None:
return X_train, X_test, y_train, y_test
Expand Down
Loading