Skip to content

[BUG] cuml/forest_inference_demo.ipynb notebook test failures #749

@jameslamb

Description

@jameslamb

Describe the bug

In RAPIDS 25.06 builds, the cuml/forest_inference_demo.ipynb notebook is failing like this:

...
File fil.pyx:693, in cuml.experimental.fil.fil.ForestInference.load()
TypeError: load() takes exactly 2 positional arguments (1 given)
...
NameError: name 'fil_model' is not defined
...
NameError: name 'fil_preds' is not defined
...
File fil.pyx:693, in cuml.experimental.fil.fil.ForestInference.load()
TypeError: load() takes exactly 2 positional arguments (1 given)
...
KeyError: 'fil_model'
...
NameError: name 'fil_inference_time' is not defined
full traceback (click me)
Testing cuml/forest_inference_demo.ipynb
TypeError ---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[9], line 1
----> 1 fil_model = ForestInference.load(
      2     filename=model_path,
      3     algo='BATCH_TREE_REORG',
      4     output_class=True,
      5     threshold=0.50,
      6     model_type='xgboost_ubj'
      7 )

File fil.pyx:693, in cuml.experimental.fil.fil.ForestInference.load()

TypeError: load() takes exactly 2 positional arguments (1 given)
NameError ---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
File <timed exec>:2

NameError: name 'fil_model' is not defined
NameError ---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[11], line 2
      1 print("The shape of predictions obtained from xgboost : ", (trained_model_preds).shape)
----> 2 print("The shape of predictions obtained from FIL : ", (fil_preds).shape)
      3 print("Are the predictions for xgboost and FIL the same : ",  cupy.allclose(trained_model_preds, fil_preds))

NameError: name 'fil_preds' is not defined
TypeError ---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
File <timed eval>:1

File /opt/conda/lib/python3.10/site-packages/distributed/client.py:3192, in Client.run(self, function, workers, wait, nanny, on_error, *args, **kwargs)
   3109 def run(
   3110     self,
   3111     function,
   (...)
   3117     **kwargs,
   3118 ):
   3119     """
   3120     Run a function on all workers outside of task scheduling system
   3121 
   (...)
   3[190](https://github.com/rapidsai/docker/actions/runs/14575734472/job/40882194854?pr=748#step:9:191)     >>> c.run(print_state, wait=False)  # doctest: +SKIP
   3191     """
-> 3192     return self.sync(
   3193         self._run,
   3194         function,
   3195         *args,
   3196         workers=workers,
   3197         wait=wait,
   3198         nanny=nanny,
   3199         on_error=on_error,
   3200         **kwargs,
   3201     )

File /opt/conda/lib/python3.10/site-packages/distributed/utils.py:363, in SyncMethodMixin.sync(self, func, asynchronous, callback_timeout, *args, **kwargs)
    361     return future
    362 else:
--> 363     return sync(
    364         self.loop, func, *args, callback_timeout=callback_timeout, **kwargs
    365     )

File /opt/conda/lib/python3.10/site-packages/distributed/utils.py:439, in sync(loop, func, callback_timeout, *args, **kwargs)
    436         wait(10)
    438 if error is not None:
--> 439     raise error
    440 else:
    441     return result

File /opt/conda/lib/python3.10/site-packages/distributed/utils.py:413, in sync.<locals>.f()
    411         awaitable = wait_for(awaitable, timeout)
    412     future = asyncio.ensure_future(awaitable)
--> 413     result = yield future
    414 except Exception as exception:
    415     error = exception

File /opt/conda/lib/python3.10/site-packages/tornado/gen.py:766, in Runner.run(self)
    764 try:
    765     try:
--> 766         value = future.result()
    767     except Exception as e:
    768         # Save the exception for later. It's important that
    769         # gen.throw() not be called inside this try/except block
    770         # because that makes sys.exc_info behave unexpectedly.
    771         exc: Optional[Exception] = e

File /opt/conda/lib/python3.10/site-packages/distributed/client.py:3097, in Client._run(self, function, nanny, workers, wait, on_error, *args, **kwargs)
   3094     continue
   3096 if on_error == "raise":
-> 3097     raise exc
   3098 elif on_error == "return":
   3099     results[key] = exc

Cell In[18], line 2, in worker_init()
      1 def worker_init(dask_worker, model_file='xgb.model'):
----> 2    dask_worker.data["fil_model"] = ForestInference.load(
      3        filename=model_file,
      4        algo='BATCH_TREE_REORG',
      5        output_class=True,
      6        threshold=0.50,
      7        model_type='xgboost_ubj'
      8     )

File fil.pyx:693, in cuml.experimental.fil.fil.ForestInference.load()

TypeError: load() takes exactly 2 positional arguments (1 given)
KeyError ---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
Cell In[22], line 2
      1 tic = time.perf_counter()
----> 2 distributed_predictions.compute()
      3 toc = time.perf_counter()
      5 fil_inference_time = toc-tic

File /opt/conda/lib/python3.10/site-packages/dask/dataframe/dask_expr/_collection.py:489, in FrameBase.compute(self, fuse, concatenate, **kwargs)
    487     out = out.repartition(npartitions=1)
    488 out = out.optimize(fuse=fuse)
--> 489 return DaskMethodsMixin.compute(out, **kwargs)

File /opt/conda/lib/python3.10/site-packages/dask/base.py:374, in DaskMethodsMixin.compute(self, **kwargs)
    350 def compute(self, **kwargs):
    351     """Compute this dask collection
    352 
    353     This turns a lazy Dask collection into its in-memory equivalent.
   (...)
    372     dask.compute
    373     """
--> 374     (result,) = compute(self, traverse=False, **kwargs)
    375     return result

File /opt/conda/lib/python3.10/site-packages/dask_cuda/explicit_comms/dataframe/shuffle.py:665, in _patched_compute(traverse, optimize_graph, scheduler, get, *args, **kwargs)
    662         return repack(results)
    664 else:
--> 665     return _base_compute(
    666         *args,
    667         traverse=traverse,
    668         optimize_graph=optimize_graph,
    669         scheduler=scheduler,
    670         get=get,
    671         **kwargs,
    672     )

File /opt/conda/lib/python3.10/site-packages/dask/base.py:662, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs)
    659     postcomputes.append(x.__dask_postcompute__())
    661 with shorten_traceback():
--> 662     results = schedule(dsk, keys, **kwargs)
    664 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)])

Cell In[20], line 3, in predict()
      1 def predict(input_df):
      2    worker = get_worker()
----> 3    return worker.data["fil_model"].predict(input_df)

File /opt/conda/lib/python3.10/site-packages/dask_cuda/device_host_file.py:273, in __getitem__()
    [271](https://github.com/rapidsai/docker/actions/runs/14575734472/job/40882194854?pr=748#step:9:272) elif key in self.host_buffer:
    [272](https://github.com/rapidsai/docker/actions/runs/14575734472/job/40882194854?pr=748#step:9:273)     return self.host_buffer[key]
--> [273](https://github.com/rapidsai/docker/actions/runs/14575734472/job/40882194854?pr=748#step:9:274) raise KeyError(key)

KeyError: 'fil_model'
NameError ---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
Cell In[23], line 2
      1 total_samples = len(df)
----> 2 print(f' {total_samples:,} inferences in {fil_inference_time:.5f} seconds'
      3       f' -- {int(total_samples/fil_inference_time):,} inferences per second ')

NameError: name 'fil_inference_time' is not defined

build: https://github.com/rapidsai/docker/actions/runs/14575734472/job/40882194854?pr=748

Steps/Code to reproduce bug

See any recent CI workflow here running the notebook tests.

Expected behavior

All notebooks should pass testing.

Environment details (please complete the following information):

See recent CI jobs.

For example: https://github.com/rapidsai/docker/actions/runs/14538359125/job/40791268880?pr=747#step:9:516

logs showing conda installs (click me)
#12 37.43   Package                                    Version  Build                            Channel               Size
#12 37.43 ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#12 37.43   Install:
#12 37.43 ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#12 37.43 
#12 37.43   + aiohappyeyeballs                           2.6.1  pyhd8ed1ab_0                     conda-forge           20kB
#12 37.43   + aiohttp                                  3.11.16  py310h89163eb_0                  conda-forge          806kB
#12 37.43   + aiosignal                                  1.3.2  pyhd8ed1ab_0                     conda-forge           13kB
#12 37.43   + anyio                                      4.9.0  pyh29332c3_0                     conda-forge          126kB
#12 37.43   + aom                                        3.9.1  hac33072_0                       conda-forge            3MB
#12 37.43   + argon2-cffi                               23.1.0  pyhd8ed1ab_1                     conda-forge           19kB
#12 37.43   + argon2-cffi-bindings                      21.2.0  py310ha75aee5_5                  conda-forge           34kB
#12 37.43   + arrow                                      1.3.0  pyhd8ed1ab_1                     conda-forge          100kB
#12 37.43   + asttokens                                  3.0.0  pyhd8ed1ab_1                     conda-forge           28kB
#12 37.43   + async-timeout                              5.0.1  pyhd8ed1ab_1                     conda-forge           12kB
#12 37.43   + attr                                       2.5.1  h166bdaf_1                       conda-forge           71kB
#12 37.43   + attrs                                     25.3.0  pyh71513ae_0                     conda-forge           57kB
#12 37.43   + aws-c-auth                                 0.9.0  h094d708_2                       conda-forge          111kB
#12 37.43   + aws-c-cal                                  0.8.9  hada3f3f_0                       conda-forge           51kB
#12 37.43   + aws-c-common                              0.12.2  hb9d3cd8_0                       conda-forge          237kB
#12 37.43   + aws-c-compression                          0.3.1  hc2d532b_4                       conda-forge           22kB
#12 37.43   + aws-c-event-stream                         0.5.4  h8170a11_5                       conda-forge           57kB
#12 37.43   + aws-c-http                                 0.9.5  hca9d837_2                       conda-forge          219kB
#12 37.43   + aws-c-io                                  0.18.0  h7b13e6b_1                       conda-forge          180kB
#12 37.43   + aws-c-mqtt                                0.12.3  h773eac8_2                       conda-forge          214kB
#12 37.43   + aws-c-s3                                  0.7.15  h46af1f8_1                       conda-forge          129kB
#12 37.43   + aws-c-sdkutils                             0.2.3  hc2d532b_4                       conda-forge           59kB
#12 37.43   + aws-checksums                              0.2.5  hc2d532b_1                       conda-forge           76kB
#12 37.43   + aws-crt-cpp                               0.32.4  h7d42c6f_0                       conda-forge          390kB
#12 37.43   + aws-sdk-cpp                             1.11.510  h5b777a2_5                       conda-forge            3MB
#12 37.43   + azure-core-cpp                            1.14.0  h5cfcd09_0                       conda-forge          345kB
#12 37.43   + azure-identity-cpp                        1.10.0  h113e628_0                       conda-forge          232kB
#12 37.43   + azure-storage-blobs-cpp                  12.13.0  h3cf044e_1                       conda-forge          549kB
#12 37.43   + azure-storage-common-cpp                  12.8.0  h736e048_1                       conda-forge          149kB
#12 37.43   + azure-storage-files-datalake-cpp         12.12.0  ha633028_1                       conda-forge          287kB
#12 37.43   + beautifulsoup4                            4.13.4  pyha770c72_0                     conda-forge          147kB
#12 37.43   + bleach                                     6.2.0  pyh29332c3_4                     conda-forge          141kB
#12 37.43   + bleach-with-css                            6.2.0  h82add2a_4                       conda-forge            4kB
#12 37.43   + blosc                                     1.21.6  he440d0b_1                       conda-forge           48kB
#12 37.43   + bokeh                                      3.7.2  pyhd8ed1ab_1                     conda-forge            5MB
#12 37.43   + branca                                     0.8.1  pyhd8ed1ab_0                     conda-forge           30kB
#12 37.43   + brotli                                     1.1.0  hb9d3cd8_2                       conda-forge           19kB
#12 37.43   + brotli-bin                                 1.1.0  hb9d3cd8_2                       conda-forge           19kB
#12 37.43   + brunsli                                      0.1  h9c3ff4c_0                       conda-forge          205kB
#12 37.43   + c-blosc2                                  2.15.2  h3122c55_1                       conda-forge          342kB
#12 37.43   + cached-property                            1.5.2  hd8ed1ab_1                       conda-forge            4kB
#12 37.43   + cached_property                            1.5.2  pyha770c72_1                     conda-forge           11kB
#12 37.43   + cachetools                                 5.5.2  pyhd8ed1ab_0                     conda-forge           15kB
#12 37.43   + charls                                     2.4.2  h59595ed_0                       conda-forge          150kB
#12 37.43   + click                                      8.1.8  pyh707e725_0                     conda-forge           85kB
#12 37.43   + cloudpickle                                3.1.1  pyhd8ed1ab_0                     conda-forge           26kB
#12 37.43   + colorcet                                   3.1.0  pyhd8ed1ab_1                     conda-forge          174kB
#12 37.43   + contourpy                                  1.3.2  py310h3788b33_0                  conda-forge          261kB
#12 37.43   + cubinlinker                                0.3.0  py310hfdf336d_1                  rapidsai-nightly       8MB
#12 37.43   + cucim                                25.06.00a20  cuda11_py310_250418_g10ee92d_20  rapidsai-nightly       1MB
#12 37.43   + cuda-bindings                             11.8.6  py310h629b23f_0                  conda-forge            5MB
#12 37.43   + cuda-profiler-api                        11.8.86  0                                nvidia                19kB
#12 37.43   + cuda-python                               11.8.6  pyha6e82b0_1                     conda-forge           15kB
#12 37.43   + cuda-version                                11.8  h70ddcb2_3                       conda-forge           21kB
#12 37.43   + cudatoolkit                               11.8.0  h4ba93d1_13                      conda-forge          716MB
#12 37.43   + cudf                                  25.6.0a172  cuda11_py310_250418_19162047     rapidsai-nightly       1MB
#12 37.43   + cudf-polars                           25.6.0a172  cuda11_py310_250418_19162047     rapidsai-nightly     173kB
#12 37.43   + cudf_kafka                            25.6.0a172  cuda11_py310_250418_19162047     rapidsai-nightly      88kB
#12 37.43   + cugraph                                25.6.0a43  cuda11_py310_250418_9e1211ac     rapidsai-nightly       1MB
#12 37.43   + cuml                                   25.6.0a79  cuda11_py310_250418_b01e2d1d     rapidsai-nightly       5MB
#12 37.43   + cuproj                                25.06.00a7  cuda11_py310_250415_g2ea9d2b8_7  rapidsai-nightly     562kB
#12 37.43   + cupy                                      13.4.1  py310h386154f_0                  conda-forge          357kB
#12 37.43   + cupy-core                                 13.4.1  py310h5da974a_0                  conda-forge           45MB
#12 37.43   + cuspatial                             25.06.00a7  cuda11_py310_250415_g2ea9d2b8_7  rapidsai-nightly     609kB
#12 37.43   + custreamz                             25.6.0a172  cuda11_py310_250418_19162047     rapidsai-nightly      34kB
#12 37.43   + cuvs                                   25.6.0a40  cuda11_py310_250418_4e0fb09c     rapidsai-nightly     470kB
#12 37.43   + cuxfilter                              25.6.0a10  cuda11_py310_250418_33621a40     rapidsai-nightly     124kB
#12 37.43   + cycler                                    0.12.1  pyhd8ed1ab_1                     conda-forge           13kB
#12 37.43   + cyrus-sasl                                2.1.27  h54b06d7_7                       conda-forge          220kB
#12 37.43   + cytoolz                                    1.0.1  py310ha75aee5_0                  conda-forge          368kB
#12 37.43   + dask                                    2025.2.0  pyhd8ed1ab_0                     conda-forge            8kB
#12 37.43   + dask-core                               2025.2.0  pyhd8ed1ab_0                     conda-forge          968kB
#12 37.43   + dask-cuda                              25.6.0a11  py312_250418_ec80ed51            rapidsai-nightly     107kB
#12 37.43   + dask-cudf                             25.6.0a172  cuda11_py310_250418_19162047     rapidsai-nightly      87kB
#12 37.43   + datashader                                0.18.0  pyhd8ed1ab_0                     conda-forge           17MB
#12 37.43   + dav1d                                      1.2.1  hd590300_0                       conda-forge          760kB
#12 37.43   + decorator                                  5.2.1  pyhd8ed1ab_0                     conda-forge           14kB
#12 37.43   + defusedxml                                 0.7.1  pyhd8ed1ab_0                     conda-forge           24kB
#12 37.43   + distributed                             2025.2.0  pyhd8ed1ab_0                     conda-forge          800kB
#12 37.43   + distributed-ucxx                       0.44.0a11  250418_7ebd1200                  rapidsai-nightly      38kB
#12 37.43   + dlpack                                       0.8  h59595ed_3                       conda-forge           15kB
#12 37.43   + exceptiongroup                             1.2.2  pyhd8ed1ab_1                     conda-forge           20kB
#12 37.43   + executing                                  2.1.0  pyhd8ed1ab_1                     conda-forge           28kB
#12 37.43   + fastrlock                                  0.8.3  py310h8c668a6_1                  conda-forge           41kB
#12 37.43   + folium                                    0.19.5  pyhd8ed1ab_0                     conda-forge           81kB
#12 37.43   + fonttools                                 4.57.0  py310h89163eb_0                  conda-forge            2MB
#12 37.43   + fqdn                                       1.5.1  pyhd8ed1ab_1                     conda-forge           17kB
#12 37.43   + freetype                                  2.13.3  h48d6fc4_0                       conda-forge          640kB
#12 37.43   + freexl                                     2.0.0  h9dce30a_2                       conda-forge           59kB
#12 37.43   + frozenlist                                 1.5.0  py310h89163eb_1                  conda-forge           60kB
#12 37.43   + fsspec                                  2025.3.2  pyhd8ed1ab_0                     conda-forge          142kB
#12 37.43   + geopandas                                  1.0.1  pyhd8ed1ab_3                     conda-forge            8kB
#12 37.43   + geopandas-base                             1.0.1  pyha770c72_3                     conda-forge          239kB
#12 37.43   + geos                                      3.13.1  h97f6797_0                       conda-forge            2MB
#12 37.43   + geotiff                                    1.7.4  h239500f_2                       conda-forge          129kB
#12 37.43   + gflags                                     2.2.2  h5888daf_1005                    conda-forge          120kB
#12 37.43   + giflib                                     5.2.2  hd590300_0                       conda-forge           77kB
#12 37.43   + glog                                       0.7.1  hbabe93e_0                       conda-forge          143kB
#12 37.43   + holoviews                                 1.20.2  pyhd8ed1ab_0                     conda-forge            4MB
#12 37.43   + icu                                         75.1  he02047a_0                       conda-forge           12MB
#12 37.43   + imagecodecs                           2024.12.30  py310h78a9a29_0                  conda-forge            2MB
#12 37.43   + imageio                                   2.37.0  pyhfb79c49_0                     conda-forge          293kB
#12 37.43   + importlib-metadata                         8.6.1  pyha770c72_0                     conda-forge           29kB
#12 37.43   + importlib_resources                        6.5.2  pyhd8ed1ab_0                     conda-forge           34kB
#12 37.43   + ipython                                   8.35.0  pyh907856f_0                     conda-forge          638kB
#12 37.43   + isoduration                              20.11.0  pyhd8ed1ab_1                     conda-forge           20kB
#12 37.43   + jedi                                      0.19.2  pyhd8ed1ab_1                     conda-forge          844kB
#12 37.43   + jinja2                                     3.1.6  pyhd8ed1ab_0                     conda-forge          113kB
#12 37.43   + joblib                                     1.4.2  pyhd8ed1ab_1                     conda-forge          220kB
#12 37.43   + json-c                                      0.18  h6688a6e_0                       conda-forge           83kB
#12 37.43   + jsonschema                                4.23.0  pyhd8ed1ab_1                     conda-forge           74kB
#12 37.43   + jsonschema-specifications              2024.10.1  pyhd8ed1ab_1                     conda-forge           16kB
#12 37.43   + jsonschema-with-format-nongpl             4.23.0  hd8ed1ab_1                       conda-forge            7kB
#12 37.43   + jupyter-server-proxy                       4.4.0  pyhd8ed1ab_1                     conda-forge           37kB
#12 37.43   + jupyter_client                             8.6.3  pyhd8ed1ab_1                     conda-forge          106kB
#12 37.43   + jupyter_core                               5.7.2  pyh31011fe_1                     conda-forge           58kB
#12 37.43   + jupyter_events                            0.12.0  pyh29332c3_0                     conda-forge           24kB
#12 37.43   + jupyter_server                            2.15.0  pyhd8ed1ab_0                     conda-forge          328kB
#12 37.43   + jupyter_server_terminals                   0.5.3  pyhd8ed1ab_1                     conda-forge           20kB
#12 37.43   + jupyterlab_pygments                        0.3.0  pyhd8ed1ab_2                     conda-forge           19kB
#12 37.43   + jxrlib                                       1.1  hd590300_3                       conda-forge          239kB
#12 37.43   + kernel-headers_linux-64                   3.10.0  he073ed8_18                      conda-forge          943kB
#12 37.43   + kiwisolver                                 1.4.7  py310h3788b33_0                  conda-forge           72kB
#12 37.43   + lazy-loader                                  0.4  pyhd8ed1ab_2                     conda-forge           16kB
#12 37.43   + lazy_loader                                  0.4  pyhd8ed1ab_2                     conda-forge            7kB
#12 37.43   + lcms2                                       2.17  h717163a_0                       conda-forge          248kB
#12 37.43   + lerc                                       4.0.0  h27087fc_0                       conda-forge          282kB
#12 37.43   + libabseil                             20250127.1  cxx17_hbbce691_0                 conda-forge            1MB
#12 37.43   + libaec                                     1.1.3  h59595ed_0                       conda-forge           35kB
#12 37.43   + libarrow                                  19.0.1  h27f8bab_8_cpu                   conda-forge            9MB
#12 37.43   + libarrow-acero                            19.0.1  hcb10f89_8_cpu                   conda-forge          644kB
#12 37.43   + libarrow-dataset                          19.0.1  hcb10f89_8_cpu                   conda-forge          614kB
#12 37.43   + libarrow-substrait                        19.0.1  h1bed206_8_cpu                   conda-forge          528kB
#12 37.43   + libavif16                                  1.2.1  hbb36593_2                       conda-forge          139kB
#12 37.43   + libblas                                    3.9.0  31_h59b9bed_openblas             conda-forge           17kB
#12 37.43   + libbrotlicommon                            1.1.0  hb9d3cd8_2                       conda-forge           69kB
#12 37.43   + libbrotlidec                               1.1.0  hb9d3cd8_2                       conda-forge           33kB
#12 37.43   + libbrotlienc                               1.1.0  hb9d3cd8_2                       conda-forge          282kB
#12 37.43   + libcap                                      2.75  h39aace5_0                       conda-forge          120kB
#12 37.43   + libcblas                                   3.9.0  31_he106b2a_openblas             conda-forge           17kB
#12 37.43   + libcrc32c                                  1.1.2  h9c3ff4c_0                       conda-forge           20kB
#12 37.43   + libcublas                              11.11.3.6  0                                nvidia               382MB
#12 37.43   + libcublas-dev                          11.11.3.6  0                                nvidia               413MB
#12 37.43   + libcucim                             25.06.00a20  cuda11_250418_g10ee92d_20        rapidsai-nightly       4MB
#12 37.43   + libcudf                               25.6.0a172  cuda11_250418_19162047           rapidsai-nightly     265MB
#12 37.43   + libcudf_kafka                         25.6.0a172  cuda11_250418_19162047           rapidsai-nightly      40kB
#12 37.43   + libcufft                               10.9.0.58  0                                nvidia               150MB
#12 37.43   + libcufile                               1.4.0.31  0                                nvidia               561kB
#12 37.43   + libcufile-dev                           1.4.0.31  0                                nvidia                 2MB
#12 37.43   + libcugraph                             25.6.0a43  cuda11_250418_9e1211ac           rapidsai-nightly     739MB
#12 37.43   + libcugraph_etl                         25.6.0a43  cuda11_250418_9e1211ac           rapidsai-nightly     428kB
#12 37.43   + libcuml                                25.6.0a79  cuda11_250418_b01e2d1d           rapidsai-nightly     173MB
#12 37.43   + libcumlprims                            25.6.0a4  cuda11_py310_250418_29815311     rapidsai-nightly       2MB
#12 37.43   + libcurand                              10.3.0.86  0                                nvidia                56MB
#12 37.43   + libcurand-dev                          10.3.0.86  0                                nvidia                56MB
#12 37.43   + libcusolver                            11.4.1.48  0                                nvidia               101MB
#12 37.43   + libcusolver-dev                        11.4.1.48  0                                nvidia                70MB
#12 37.43   + libcusparse                            11.7.5.86  0                                nvidia               185MB
#12 37.43   + libcusparse-dev                        11.7.5.86  0                                nvidia               377MB
#12 37.43   + libcuspatial                          25.06.00a7  cuda11_250415_g2ea9d2b8_7        rapidsai-nightly      16MB
#12 37.43   + libcuvs                                25.6.0a40  cuda11_250418_4e0fb09c           rapidsai-nightly     755MB
#12 37.43   + libdeflate                                  1.23  h4ddbbb0_0                       conda-forge           72kB
#12 37.43   + libevent                                  2.1.12  hf998b51_1                       conda-forge          427kB
#12 37.43   + libgcrypt-lib                             1.11.0  hb9d3cd8_2                       conda-forge          586kB
#12 37.43   + libgdal-core                              3.10.3  hab2de9c_2                       conda-forge           11MB
#12 37.43   + libgfortran                               14.2.0  h69a702a_2                       conda-forge           54kB
#12 37.43   + libgfortran5                              14.2.0  hf1ad2bd_2                       conda-forge            1MB
#12 37.43   + libgoogle-cloud                           2.36.0  hc4361e1_1                       conda-forge            1MB
#12 37.43   + libgoogle-cloud-storage                   2.36.0  h0121fbd_1                       conda-forge          786kB
#12 37.43   + libgpg-error                                1.54  hbd13f7d_0                       conda-forge          279kB
#12 37.43   + libgrpc                                   1.71.0  he753a82_0                       conda-forge            8MB
#12 37.43   + libhwy                                     1.2.0  hf40a0c7_0                       conda-forge            1MB
#12 37.43   + libjpeg-turbo                              3.0.0  hd590300_1                       conda-forge          619kB
#12 37.43   + libjxl                                    0.11.1  h7b0646d_1                       conda-forge            2MB
#12 37.43   + libkml                                     1.3.0  hf539b9f_1021                    conda-forge          402kB
#12 37.43   + libkvikio                              25.6.0a17  cuda11_250418_9f143867           rapidsai-nightly     306kB
#12 37.43   + liblapack                                  3.9.0  31_h7ac8fdf_openblas             conda-forge           17kB
#12 37.43   + libllvm14                                 14.0.6  hcd5def8_4                       conda-forge           31MB
#12 37.43   + libnl                                     3.11.0  hb9d3cd8_0                       conda-forge          741kB
#12 37.43   + libntlm                                      1.8  hb9d3cd8_0                       conda-forge           33kB
#12 37.43   + libopenblas                               0.3.29  pthreads_h94d23a6_0              conda-forge            6MB
#12 37.43   + libopentelemetry-cpp                      1.20.0  hd1b1c89_0                       conda-forge          850kB
#12 37.43   + libopentelemetry-cpp-headers              1.20.0  ha770c72_0                       conda-forge          347kB
#12 37.43   + libparquet                                19.0.1  h081d1f1_8_cpu                   conda-forge            1MB
#12 37.43   + libpng                                    1.6.47  h943b412_0                       conda-forge          289kB
#12 37.43   + libprotobuf                               5.29.3  h501fc15_0                       conda-forge            3MB
#12 37.43   + libraft                                25.6.0a25  cuda11_250418_8f79e34a           rapidsai-nightly       3MB
#12 37.43   + libraft-headers                        25.6.0a25  cuda11_250418_8f79e34a           rapidsai-nightly      17kB
#12 37.43   + libraft-headers-only                   25.6.0a25  cuda11_250418_8f79e34a           rapidsai-nightly       2MB
#12 37.43   + librdkafka                                 2.8.0  h2e2c4f7_0                       conda-forge           18MB
#12 37.43   + libre2-11                             2024.07.02  hba17884_3                       conda-forge          210kB
#12 37.43   + librmm                                 25.6.0a25  cuda11_250418_c7a33143           rapidsai-nightly       1MB
#12 37.43   + librttopo                                  1.1.0  hd718a1a_18                      conda-forge          233kB
#12 37.43   + libsodium                                 1.0.20  h4ab18f5_0                       conda-forge          206kB
#12 37.43   + libspatialite                              5.1.0  he17ca71_14                      conda-forge            4MB
#12 37.43   + libsystemd0                                257.4  h4e0b6ca_1                       conda-forge          489kB
#12 37.43   + libthrift                                 0.21.0  h0e7cc3e_0                       conda-forge          426kB
#12 37.43   + libtiff                                    4.7.0  hd9ff[511](https://github.com/rapidsai/docker/actions/runs/14538359125/job/40791268880?pr=747#step:9:517)_3                       conda-forge          428kB
#12 37.43   + libucxx                                0.44.0a11  cuda11_250418_7ebd1200           rapidsai-nightly     298kB
#12 37.43   + libudev1                                   257.4  hbe16f8c_1                       conda-forge          144kB
#12 37.43   + libutf8proc                               2.10.0  h4c51ac1_0                       conda-forge           83kB
#12 37.43   + libuv                                     1.50.0  hb9d3cd8_0                       conda-forge          891kB
#12 37.43   + libwebp-base                               1.5.0  h851e524_0                       conda-forge          430kB
#12 37.43   + libxcb                                    1.17.0  h8a09558_0                       conda-forge          396kB
#12 37.43   + libxgboost                                 2.1.4  rapidsai_hb8415e6_4              rapidsai-nightly     100MB
#12 37.43   + libzopfli                                  1.0.3  h9c3ff4c_0                       conda-forge          168kB
#12 37.43   + linkify-it-py                              2.0.3  pyhd8ed1ab_1                     conda-forge           24kB
#12 37.43   + llvmlite                                  0.43.0  py310h1a6248f_1                  conda-forge            3MB
#12 37.43   + locket                                     1.0.0  pyhd8ed1ab_0                     conda-forge            8kB
#12 37.43   + lz4                                        4.3.3  py310h80b8a69_2                  conda-forge           37kB
#12 37.43   + mapclassify                                2.8.1  pyhd8ed1ab_1                     conda-forge           57kB
#12 37.43   + markdown                                     3.8  pyhd8ed1ab_0                     conda-forge           80kB
#12 37.43   + markdown-it-py                             3.0.0  pyhd8ed1ab_1                     conda-forge           64kB
#12 37.43   + markupsafe                                 3.0.2  py310h89163eb_1                  conda-forge           23kB
#12 37.43   + matplotlib-base                           3.10.1  py310h68603db_0                  conda-forge            7MB
#12 37.43   + matplotlib-inline                          0.1.7  pyhd8ed1ab_1                     conda-forge           14kB
#12 37.43   + mdit-py-plugins                            0.4.2  pyhd8ed1ab_1                     conda-forge           42kB
#12 37.43   + mdurl                                      0.1.2  pyhd8ed1ab_1                     conda-forge           14kB
#12 37.43   + minizip                                    4.0.9  h05a5f5f_0                       conda-forge           93kB
#12 37.43   + mistune                                    3.1.3  pyh29332c3_0                     conda-forge           73kB
#12 37.43   + msgpack-python                             1.1.0  py310h3788b33_0                  conda-forge           98kB
#12 37.43   + multidict                                  6.4.3  py310h89163eb_0                  conda-forge           80kB
#12 37.43   + multipledispatch                           0.6.0  pyhd8ed1ab_1                     conda-forge           17kB
#12 37.43   + munkres                                    1.1.4  pyh9f0ad1d_0                     conda-forge           12kB
#12 37.43   + narwhals                                  1.35.0  pyh29332c3_0                     conda-forge          205kB
#12 37.43   + nbclient                                  0.10.2  pyhd8ed1ab_0                     conda-forge           28kB
#12 37.43   + nbconvert-core                            7.16.6  pyh29332c3_0                     conda-forge          201kB
#12 37.43   + nbformat                                  5.10.4  pyhd8ed1ab_1                     conda-forge          101kB
#12 37.43   + nccl                                    2.26.2.1  h03a54cd_1                       conda-forge          132MB
#12 37.43   + networkx                                   3.4.2  pyh267e887_2                     conda-forge            1MB
#12 37.43   + nodejs                                   22.13.0  hf235a45_0                       conda-forge           22MB
#12 37.43   + numba                                     0.60.0  py310h5dc88bb_0                  conda-forge            4MB
#12 37.43   + numba-cuda                                 0.4.0  pyh267e887_0                     conda-forge          332kB
#12 37.43   + numpy                                      2.0.2  py310hd6e36ab_1                  conda-forge            8MB
#12 37.43   + nvcomp                                  4.2.0.11  hf3d1f9a_1                       conda-forge           20MB
#12 37.43   + nvidia-ml-py                           12.570.86  pyhd8ed1ab_0                     conda-forge           44kB
#12 37.43   + nvtx                                      0.2.11  py310ha75aee5_0                  conda-forge           96kB
#12 37.43   + nx-cugraph                             25.6.0a14  py310_250418_9f6e317e            rapidsai-nightly     208kB
#12 37.43   + openjpeg                                   2.5.3  h5fbd93e_0                       conda-forge          343kB
#12 37.43   + orc                                        2.1.1  h17f744e_1                       conda-forge            1MB
#12 37.43   + overrides                                  7.7.0  pyhd8ed1ab_1                     conda-forge           30kB
#12 37.43   + pandas                                     2.2.3  py310h5eaa309_3                  conda-forge           13MB
#12 37.43   + pandocfilters                              1.5.0  pyhd8ed1ab_0                     conda-forge           12kB
#12 37.43   + panel                                      1.6.2  pyhd8ed1ab_0                     conda-forge           22MB
#12 37.43   + param                                      2.2.0  pyhd8ed1ab_0                     conda-forge          105kB
#12 37.43   + parso                                      0.8.4  pyhd8ed1ab_1                     conda-forge           75kB
#12 37.43   + partd                                      1.4.2  pyhd8ed1ab_0                     conda-forge           21kB
#12 37.43   + pcre2                                      10.44  hba22ea6_2                       conda-forge          952kB
#12 37.43   + pexpect                                    4.9.0  pyhd8ed1ab_1                     conda-forge           54kB
#12 37.43   + pickleshare                                0.7.5  pyhd8ed1ab_1004                  conda-forge           12kB
#12 37.43   + pillow                                    11.1.0  py310h7e6dc6c_0                  conda-forge           42MB
#12 37.43   + pkgutil-resolve-name                      1.3.10  pyhd8ed1ab_2                     conda-forge           11kB
#12 37.43   + polars                                    1.26.0  py310hc556931_0                  conda-forge           27MB
#12 37.43   + proj                                       9.6.0  h0054346_1                       conda-forge            3MB
#12 37.43   + prometheus-cpp                             1.3.0  ha5d0236_0                       conda-forge          200kB
#12 37.43   + prometheus_client                         0.21.1  pyhd8ed1ab_0                     conda-forge           49kB
#12 37.43   + prompt-toolkit                            3.0.51  pyha770c72_0                     conda-forge          272kB
#12 37.43   + propcache                                  0.3.1  py310h89163eb_0                  conda-forge           54kB
#12 37.43   + psutil                                     7.0.0  py310ha75aee5_0                  conda-forge          354kB
#12 37.43   + pthread-stubs                                0.4  hb9d3cd8_1002                    conda-forge            8kB
#12 37.43   + ptxcompiler                                0.8.1  py310hda4ad70_4                  conda-forge            8MB
#12 37.43   + ptyprocess                                 0.7.0  pyhd8ed1ab_1                     conda-forge           19kB
#12 37.43   + pure_eval                                  0.2.3  pyhd8ed1ab_1                     conda-forge           17kB
#12 37.43   + py-xgboost                                 2.1.4  rapidsai_pyh35aab83_4            rapidsai-nightly     137kB
#12 37.43   + pyarrow                                   19.0.1  py310hff[520](https://github.com/rapidsai/docker/actions/runs/14538359125/job/40791268880?pr=747#step:9:526)83_0                  conda-forge           25kB
#12 37.43   + pyarrow-core                              19.0.1  py310hac404ae_0_cpu              conda-forge            5MB
#12 37.43   + pyct                                       0.5.0  pyhd8ed1ab_1                     conda-forge           20kB
#12 37.43   + pygments                                  2.19.1  pyhd8ed1ab_0                     conda-forge          889kB
#12 37.43   + pylibcudf                             25.6.0a172  cuda11_py310_250418_19162047     rapidsai-nightly       4MB
#12 37.43   + pylibcugraph                           25.6.0a43  cuda11_py310_250418_9e1211ac     rapidsai-nightly     760kB
#12 37.43   + pylibraft                              25.6.0a25  cuda11_py310_250418_8f79e34a     rapidsai-nightly     256kB
#12 37.43   + pynvml                                    12.0.0  pyhd8ed1ab_0                     conda-forge           26kB
#12 37.43   + pyogrio                                   0.10.0  py310h0aed7a2_1                  conda-forge          610kB
#12 37.43   + pyparsing                                  3.2.3  pyhd8ed1ab_1                     conda-forge           96kB
#12 37.43   + pyproj                                     3.7.1  py310h71d0299_1                  conda-forge          [536](https://github.com/rapidsai/docker/actions/runs/14538359125/job/40791268880?pr=747#step:9:542)kB
#12 37.43   + python-confluent-kafka                     2.8.0  py310ha75aee5_0                  conda-forge          272kB
#12 37.43   + python-dateutil                      2.9.0.post0  pyhff2d567_1                     conda-forge          223kB
#12 37.43   + python-fastjsonschema                     2.21.1  pyhd8ed1ab_0                     conda-forge          226kB
#12 37.43   + python-json-logger                         2.0.7  pyhd8ed1ab_0                     conda-forge           13kB
#12 37.43   + python-tzdata                             2025.2  pyhd8ed1ab_0                     conda-forge          144kB
#12 37.43   + pytz                                      2025.2  pyhd8ed1ab_0                     conda-forge          189kB
#12 37.43   + pyviz_comms                                3.0.4  pyhd8ed1ab_1                     conda-forge           49kB
#12 37.43   + pywavelets                                 1.8.0  py310hf462985_0                  conda-forge            4MB
#12 37.43   + pyyaml                                     6.0.2  py310h89163eb_2                  conda-forge          183kB
#12 37.43   + pyzmq                                     26.4.0  py310h71f11fc_0                  conda-forge          338kB
#12 37.43   + qhull                                     2020.2  h434a139_5                       conda-forge          553kB
#12 37.43   + raft-dask                              25.6.0a25  cuda11_py310_250418_8f79e34a     rapidsai-nightly     227kB
#12 37.43   + rapids                                 25.06.00a  cuda11_py310_250418_gc1098b4_0   rapidsai-nightly       6kB
#12 37.43   + rapids-dask-dependency                  25.6.0a2  250411_f7b1ecd9                  rapidsai-nightly      22kB
#12 37.43   + rapids-logger                             0.1.11  h98325ef_0                       rapidsai-nightly     161kB
#12 37.43   + rapids-xgboost                         25.06.00a  cuda11_py310_250418_gc1098b4_0   rapidsai-nightly       6kB
#12 37.43   + rav1e                                      0.6.6  he8a937b_2                       conda-forge           15MB
#12 37.43   + rdma-core                                   56.1  h5888daf_1                       conda-forge            1MB
#12 37.43   + re2                                   2024.07.02  h9925aae_3                       conda-forge           27kB
#12 37.43   + referencing                               0.36.2  pyh29332c3_0                     conda-forge           52kB
#12 37.43   + rfc3339-validator                          0.1.4  pyhd8ed1ab_1                     conda-forge           10kB
#12 37.43   + rfc3986-validator                          0.1.1  pyh9f0ad1d_0                     conda-forge            8kB
#12 37.43   + rich                                      14.0.0  pyh29332c3_0                     conda-forge          200kB
#12 37.43   + rmm                                    25.6.0a25  cuda11_py310_250418_c7a33143     rapidsai-nightly     469kB
#12 37.43   + rpds-py                                   0.24.0  py310hc1293b2_0                  conda-forge          391kB
#12 37.43   + s2n                                       1.5.16  hba75a32_1                       conda-forge          353kB
#12 37.43   + scikit-image                              0.24.0  py310h5eaa309_3                  conda-forge           11MB
#12 37.43   + scikit-learn                               1.6.1  py310h27f47ee_0                  conda-forge            9MB
#12 37.43   + scipy                                     1.15.2  py310h1d65ade_0                  conda-forge           16MB
#12 37.43   + send2trash                                 1.8.3  pyh0d859eb_1                     conda-forge           23kB
#12 37.43   + shapely                                    2.1.0  py310h247727d_0                  conda-forge          [544](https://github.com/rapidsai/docker/actions/runs/14538359125/job/40791268880?pr=747#step:9:550)kB
#12 37.43   + simpervisor                                1.0.0  pyhd8ed1ab_1                     conda-forge           14kB
#12 37.43   + six                                       1.17.0  pyhd8ed1ab_0                     conda-forge           16kB
#12 37.43   + snappy                                     1.2.1  h8bd8927_1                       conda-forge           43kB
#12 37.43   + sniffio                                    1.3.1  pyhd8ed1ab_1                     conda-forge           15kB
#12 37.43   + sortedcontainers                           2.4.0  pyhd8ed1ab_1                     conda-forge           29kB
#12 37.43   + soupsieve                                    2.5  pyhd8ed1ab_1                     conda-forge           37kB
#12 37.43   + sqlite                                    3.49.1  h9eae976_2                       conda-forge          860kB
#12 37.43   + stack_data                                 0.6.3  pyhd8ed1ab_1                     conda-forge           27kB
#12 37.43   + streamz                                    0.6.4  pyhd8ed1ab_1                     conda-forge           68kB
#12 37.43   + svt-av1                                    3.0.2  h5888daf_0                       conda-forge            3MB
#12 37.43   + sysroot_linux-64                            2.17  h0157908_18                      conda-forge           15MB
#12 37.43   + tblib                                      3.1.0  pyhd8ed1ab_0                     conda-forge           18kB
#12 37.43   + terminado                                 0.18.1  pyh0d859eb_0                     conda-forge           22kB
#12 37.43   + threadpoolctl                              3.6.0  pyhecae5ae_0                     conda-forge           24kB
#12 37.43   + tifffile                               2025.3.30  pyhd8ed1ab_0                     conda-forge          180kB
#12 37.43   + tinycss2                                   1.4.0  pyhd8ed1ab_0                     conda-forge           28kB
#12 37.43   + toolz                                      1.0.0  pyhd8ed1ab_1                     conda-forge           52kB
#12 37.43   + tornado                                    6.4.2  py310ha75aee5_0                  conda-forge          650kB
#12 37.43   + traitlets                                 5.14.3  pyhd8ed1ab_1                     conda-forge          110kB
#12 37.43   + treelite                                   4.4.1  py310hebdfe98_1                  conda-forge          593kB
#12 37.43   + types-python-dateutil             2.9.0.20241206  pyhd8ed1ab_0                     conda-forge           22kB
#12 37.43   + typing-extensions                         4.13.2  h0e9735f_0                       conda-forge           90kB
#12 37.43   + typing_extensions                         4.13.2  pyh29332c3_0                     conda-forge           52kB
#12 37.43   + typing_utils                               0.1.0  pyhd8ed1ab_1                     conda-forge           15kB
#12 37.43   + uc-micro-py                                1.0.3  pyhd8ed1ab_1                     conda-forge           11kB
#12 37.43   + ucx                                       1.18.0  hfd9a62f_3                       conda-forge            7MB
#12 37.43   + ucx-py                                  0.44.0a4  py310_250418_ab4ee896            rapidsai-nightly     420kB
#12 37.43   + ucxx                                   0.44.0a11  cuda11_py3.10_250418_7ebd1200    rapidsai-nightly     482kB
#12 37.43   + unicodedata2                              16.0.0  py310ha75aee5_0                  conda-forge          405kB
#12 37.43   + uri-template                               1.3.0  pyhd8ed1ab_1                     conda-forge           24kB
#12 37.43   + uriparser                                  0.9.8  hac33072_0                       conda-forge           48kB
#12 37.43   + wcwidth                                   0.2.13  pyhd8ed1ab_1                     conda-forge           33kB
#12 37.43   + webcolors                                24.11.1  pyhd8ed1ab_0                     conda-forge           18kB
#12 37.43   + webencodings                               0.5.1  pyhd8ed1ab_3                     conda-forge           15kB
#12 37.43   + websocket-client                           1.8.0  pyhd8ed1ab_1                     conda-forge           47kB
#12 37.43   + xarray                                  2025.3.1  pyhd8ed1ab_0                     conda-forge          854kB
#12 37.43   + xerces-c                                   3.2.5  h988505b_2                       conda-forge            2MB
#12 37.43   + xgboost                                    2.1.4  rapidsai_pyh0e8b7e3_4            rapidsai-nightly      17kB
#12 37.43   + xorg-libxau                               1.0.12  hb9d3cd8_0                       conda-forge           15kB
#12 37.43   + xorg-libxdmcp                              1.1.5  hb9d3cd8_0                       conda-forge           20kB
#12 37.43   + xyzservices                             2025.1.0  pyhd8ed1ab_0                     conda-forge           49kB
#12 37.43   + yaml                                       0.2.5  h7f98852_2                       conda-forge           89kB
#12 37.43   + yarl                                      1.20.0  py310h89163eb_0                  conda-forge          145kB
#12 37.43   + zeromq                                     4.3.5  h3b0a872_7                       conda-forge          335kB
#12 37.43   + zfp                                        1.0.1  h[588](https://github.com/rapidsai/docker/actions/runs/14538359125/job/40791268880?pr=747#step:9:594)8daf_2                       conda-forge          279kB
#12 37.43   + zict                                       3.0.0  pyhd8ed1ab_1                     conda-forge           36kB
#12 37.43   + zipp                                      3.21.0  pyhd8ed1ab_1                     conda-forge           22kB
#12 37.43   + zlib                                       1.3.1  hb9d3cd8_2                       conda-forge           92kB
#12 37.43   + zlib-ng                                    2.2.4  h7955e40_0                       conda-forge          109kB
#12 37.43 
#12 37.43   Upgrade:
#12 37.43 ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#12 37.43 
#12 37.43   - libxml2                                   2.13.5  h0d44e9d_1                       conda-forge          690kB
#12 37.43   + libxml2                                   2.13.7  h4bc477f_1                       conda-forge          692kB
#12 37.43 
#12 37.43   Summary:
#12 37.43 
#12 37.43   Install: 355 packages
#12 37.43   Upgrade: 1 packages
#12 37.43 
#12 37.43   Total download: 5GB
#12 37.43 
#12 37.43 ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────

Additional context

I noticed in those logs that cuml 25.6.0a79 is getting installed... even though the latest version is 25.6.0a84 (https://anaconda.org/rapidsai-nightly/cuml). Maybe something somewhere in the RAPIDS stack is causing dependency conflicts that prevent the newer versions from being installed.

Metadata

Metadata

Assignees

No one assigned

    Labels

    ? - Needs TriageNeed team to review and classifybugSomething isn't working

    Type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions