Skip to content
This repository has been archived by the owner on Nov 25, 2024. It is now read-only.

Add gather/scatter support 1D tensor #229

Merged
merged 3 commits into from
Nov 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@


def gen_int_embedding(indice_tensor, embedding_dim, output_type):
if embedding_dim == 0:
embedding_dim = 1 # unsqueeze to 2D tensor for input embeddings (2D is required for scatter op)
indice_count = indice_tensor.shape[0]
indice_part = (
indice_tensor.type(torch.int).reshape(indice_count, 1).repeat(1, embedding_dim)
Expand Down Expand Up @@ -54,9 +56,14 @@ def scatter_gather_test_cast(
"Rank=%d testing scatter gather with embedding_count=%d, embedding_dim=%d, indice_count=%d, dt=%s, mt=%s, ml=%s"
% (world_rank, embedding_count, embedding_dim, indice_count, dt, mt, ml)
)
wm_embedding = wmb.create_wholememory_matrix(
dt, embedding_count, embedding_dim, -1, wm_comm, mt, ml, entry_partition
)
if embedding_dim == 0:
wm_embedding = wmb.create_wholememory_array(
dt, embedding_count, wm_comm, mt, ml, entry_partition
)
else:
wm_embedding = wmb.create_wholememory_matrix(
dt, embedding_count, embedding_dim, -1, wm_comm, mt, ml, entry_partition
)

scatter_indice = torch.arange(
world_rank, embedding_count, world_size, dtype=torch.int64
Expand Down Expand Up @@ -91,9 +98,13 @@ def scatter_gather_test_cast(
local_ref_start = wm_embedding.get_local_entry_start()
local_ref_count = wm_embedding.get_local_entry_count()
assert local_start == local_ref_start
assert local_tensor_cuda.dim() == 2
assert local_tensor_cuda.dim() == 2 if embedding_dim > 0 else 1
assert local_tensor_cuda.shape[0] == local_ref_count
assert local_tensor_cuda.shape[1] == embedding_dim
if local_tensor_cuda.dim() == 2:
assert local_tensor_cuda.shape[1] == embedding_dim
else:
# unsqueeze to 2D for comparison
local_tensor_cuda = local_tensor_cuda.unsqueeze(1)

local_tensor = local_tensor_cuda.cpu()
local_indices = torch.arange(local_ref_start, local_ref_start + local_ref_count, dtype=torch.int64)
Expand All @@ -114,6 +125,9 @@ def scatter_gather_test_cast(
)
embedding_after_gather = embedding_after_gather_cuda.cpu()
ref_embedding_gather = gen_int_embedding(gather_indice, embedding_dim, torch.float)
if embedding_after_gather.dim() == 1:
# unsqueeze to 2D for comparison
embedding_after_gather = embedding_after_gather.unsqueeze(1)
# print('\ngather_indice=%s\nembedding_after_gather=%s\nref_embedding_gather=%s' % (
# gather_indice, embedding_after_gather, ref_embedding_gather))
assert torch.allclose(embedding_after_gather, ref_embedding_gather)
Expand All @@ -134,7 +148,6 @@ def routine_func(world_rank: int, world_size: int):
wm_comm = wm_comm.wmb_comm

embedding_count = 1024 * 256 * world_size + 3
embedding_dim = 256
indice_count = 100001
dt = wmb.WholeMemoryDataType.DtFloat
entry_partition = random_partition(embedding_count, world_size)
Expand All @@ -150,11 +163,12 @@ def routine_func(world_rank: int, world_size: int):
wmb.WholeMemoryMemoryLocation.MlHost,
wmb.WholeMemoryMemoryLocation.MlDevice,
]:
if wm_comm.support_type_location(mt, ml):
scatter_gather_test_cast(
wm_comm, dt, mt, ml, embedding_count, embedding_dim, indice_count, True, entry_partition
)
# scatter_gather_test_cast(wm_comm, dt, mt, ml, embedding_count, embedding_dim, indice_count, False)
for embedding_dim in [0, 256]: # 0 is for 1D tensor
if wm_comm.support_type_location(mt, ml):
scatter_gather_test_cast(
wm_comm, dt, mt, ml, embedding_count, embedding_dim, indice_count, True, entry_partition
)
# scatter_gather_test_cast(wm_comm, dt, mt, ml, embedding_count, embedding_dim, indice_count, False)
wmb.finalize()


Expand Down
12 changes: 8 additions & 4 deletions python/pylibwholegraph/pylibwholegraph/torch/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def gather(self,
*,
force_dtype: Union[torch.dtype, None] = None):
assert indice.dim() == 1
embedding_dim = self.shape[1]
embedding_dim = self.shape[1] if self.dim() == 2 else 1
embedding_count = indice.shape[0]
current_cuda_device = "cuda:%d" % (torch.cuda.current_device(),)
output_dtype = (
Expand All @@ -80,15 +80,19 @@ def gather(self,
wrap_torch_tensor(output_tensor),
get_wholegraph_env_fns(),
get_stream())
return output_tensor
return output_tensor.view(-1) if self.dim() == 1 else output_tensor

def scatter(self,
input_tensor: torch.Tensor,
indice: torch.Tensor):
assert indice.dim() == 1
assert input_tensor.dim() == 2
assert input_tensor.dim() == self.dim()
assert indice.shape[0] == input_tensor.shape[0]
assert input_tensor.shape[1] == self.shape[1]
if self.dim() == 2:
assert input_tensor.shape[1] == self.shape[1]
else:
# unsqueeze input to 2D tensor here because wmb_tensor is unsqueezed within scatter_op
input_tensor = input_tensor.unsqueeze(1)
wmb.wholememory_scatter_op(wrap_torch_tensor(input_tensor),
wrap_torch_tensor(indice),
self.wmb_tensor,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2019-2023, NVIDIA CORPORATION.
# Copyright (c) 2019-2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand Down Expand Up @@ -39,8 +39,10 @@ def wholememory_gather_forward_functor(
assert indices_tensor.dtype == torch.int32 or indices_tensor.dtype == torch.int64
if torch_output_dtype is None:
torch_output_dtype = wholememory_dtype_to_torch_dtype(wholememory_tensor.dtype)

embedding_dim = wholememory_tensor.shape[1] if wholememory_tensor.dim() == 2 else 1
output_tensor = torch.empty(
[indices_tensor.shape[0], wholememory_tensor.shape[1]],
[indices_tensor.shape[0], embedding_dim],
device="cuda",
dtype=torch_output_dtype,
requires_grad=requires_grad,
Expand All @@ -52,7 +54,7 @@ def wholememory_gather_forward_functor(
get_wholegraph_env_fns(),
get_stream(),
)
return output_tensor
return output_tensor.view(-1) if wholememory_tensor.dim() == 1 else output_tensor


def wholememory_scatter_functor(
Expand Down
Loading