Skip to content

raspberryice/ala-gcn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ala-GCN

Dependencies

  • pytorch=1.4 (1.4 to save sparse tensors)
  • dgl=0.4.1
  • pytorch-lightning=0.5.3.2

(pytorch-lightning has gone through some breaking changes since we wrote this code. If you try using the latest version of pytorch-lightning, you will run into errors like train_dataloader not defined.)

Datasets

  • Cora
  • Citeseer
  • Pubmed
  • Amazon (co-purchasing network)

Hyperparameters

Cora

python train.py --model=adagnn --dataset=cora --lr=0.01 --percentage=0.05 --n-layers=5 --dropout=0.5 --weight-decay=5e-6 --n-hidden=16 --n-epochs=200 --self-loop

Use 5 layers for 5% and 3%, 9 layers for 1%.

python train.py --percentage=0.05 --n-layers=3  --dataset=cora --model=adagat --lr=0.005 --dropout=0.6 --weight-decay=5.00E-04 --n-hidden=8 --n-epochs=300 --self-loop

Use 3 layers for 5%, 3% and 1%. Notice that due to the size of the dataset, the variance of performance with 1% seed labels is relatively large.

Citeseer

python train.py  --percentage=0.05 --n-layers=3 --dataset=citeseer --model=adagnn --lr=0.01 --dropout=0.5 --weight-decay=5.00E-06 --n-hidden=16 --n-epochs=200 --self-loop

Use 3 layers for 5%, 4 layers for 3% and 7 layers for 1%.

python train.py --percentage=0.05 --n-layers=3 --dataset=citeseer --model=adagat --lr=0.005 --dropout=0.8 --weight-decay=5.00E-04 --n-hidden=8 --n-epochs=300 --self-loop

Use 3 layers for 5%, 3 layers for 3% and 7 layers for 1%.

Pubmed

python train.py --percentage=0.003 --n-layers=9 --dataset=pubmed --model=adagnn --lr=0.01 --dropout=0.5 --weight-decay=5.00E-06 --n-hidden=16 --n-epochs=500 --self-loop

Use 9 layers for 0.3%, 0.15% and 0.05%.

python train.py --percentage=0.003 --n-layers=5 --dataset=pubmed --model=adagat --lr=0.005 --dropout=0.5 --weight-decay=5.00E-04 --n-hidden=16 --n-epochs=500' --self-loop

Use 5 layers for 0.3%, 5 layers for 0.15% and 7 layers for 0.05%.

Models

  • GCN
  • GAT
  • GraphSAGE
  • SGC
  • CS-GNN (ICLR 2020)
  • GResNet (Arxiv)
  • APPNP
  • AdaGNN (AdaGCN)
  • AdaGAT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages