|
| 1 | +import os |
| 2 | + |
| 3 | +import json |
| 4 | +import logging |
| 5 | +from typing import Dict, List, Optional |
| 6 | + |
| 7 | +import ray |
| 8 | +from fastapi import FastAPI |
| 9 | +from ray import serve |
| 10 | +from starlette.requests import Request |
| 11 | +from starlette.responses import Response |
| 12 | + |
| 13 | +from vllm import LLM, SamplingParams |
| 14 | + |
| 15 | +logger = logging.getLogger("ray.serve") |
| 16 | + |
| 17 | +app = FastAPI() |
| 18 | + |
| 19 | +@serve.deployment(name="VLLMDeployment") |
| 20 | +@serve.ingress(app) |
| 21 | +class VLLMDeployment: |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + model_id, |
| 25 | + num_tpu_chips, |
| 26 | + max_model_len, |
| 27 | + tokenizer_mode, |
| 28 | + dtype, |
| 29 | + ): |
| 30 | + self.llm = LLM( |
| 31 | + model=model_id, |
| 32 | + tensor_parallel_size=num_tpu_chips, |
| 33 | + max_model_len=max_model_len, |
| 34 | + dtype=dtype, |
| 35 | + download_dir=os.environ['VLLM_XLA_CACHE_PATH'], # Error if not provided. |
| 36 | + tokenizer_mode=tokenizer_mode, |
| 37 | + enforce_eager=True, |
| 38 | + ) |
| 39 | + |
| 40 | + @app.post("/v1/generate") |
| 41 | + async def generate(self, request: Request): |
| 42 | + request_dict = await request.json() |
| 43 | + prompts = request_dict.pop("prompt") |
| 44 | + max_toks = int(request_dict.pop("max_tokens")) |
| 45 | + print("Processing prompt ", prompts) |
| 46 | + sampling_params = SamplingParams(temperature=0.7, |
| 47 | + top_p=1.0, |
| 48 | + n=1, |
| 49 | + max_tokens=max_toks) |
| 50 | + |
| 51 | + outputs = self.llm.generate(prompts, sampling_params) |
| 52 | + for output in outputs: |
| 53 | + prompt = output.prompt |
| 54 | + generated_text = "" |
| 55 | + token_ids = [] |
| 56 | + for completion_output in output.outputs: |
| 57 | + generated_text += completion_output.text |
| 58 | + token_ids.extend(list(completion_output.token_ids)) |
| 59 | + |
| 60 | + print("Generated text: ", generated_text) |
| 61 | + ret = { |
| 62 | + "prompt": prompt, |
| 63 | + "text": generated_text, |
| 64 | + "token_ids": token_ids, |
| 65 | + } |
| 66 | + |
| 67 | + return Response(content=json.dumps(ret)) |
| 68 | + |
| 69 | +def get_num_tpu_chips() -> int: |
| 70 | + if "TPU" not in ray.cluster_resources(): |
| 71 | + # Pass in TPU chips when the current Ray cluster resources can't be auto-detected (i.e for autoscaling). |
| 72 | + if os.environ.get('TPU_CHIPS') is not None: |
| 73 | + return int(os.environ.get('TPU_CHIPS')) |
| 74 | + return 0 |
| 75 | + return int(ray.cluster_resources()["TPU"]) |
| 76 | + |
| 77 | +def get_max_model_len() -> Optional[int]: |
| 78 | + if 'MAX_MODEL_LEN' not in os.environ or os.environ['MAX_MODEL_LEN'] == "": |
| 79 | + return None |
| 80 | + return int(os.environ['MAX_MODEL_LEN']) |
| 81 | + |
| 82 | +def get_tokenizer_mode() -> str: |
| 83 | + if 'TOKENIZER_MODE' not in os.environ or os.environ['TOKENIZER_MODE'] == "": |
| 84 | + return "auto" |
| 85 | + return os.environ['TOKENIZER_MODE'] |
| 86 | + |
| 87 | +def get_dtype() -> str: |
| 88 | + if 'DTYPE' not in os.environ or os.environ['DTYPE'] == "": |
| 89 | + return "auto" |
| 90 | + return os.environ['DTYPE'] |
| 91 | + |
| 92 | +def build_app(cli_args: Dict[str, str]) -> serve.Application: |
| 93 | + """Builds the Serve app based on CLI arguments.""" |
| 94 | + ray.init(ignore_reinit_error=True, address="ray://localhost:10001") |
| 95 | + |
| 96 | + model_id = os.environ['MODEL_ID'] |
| 97 | + |
| 98 | + num_tpu_chips = get_num_tpu_chips() |
| 99 | + pg_resources = [] |
| 100 | + pg_resources.append({"CPU": 1}) # for the deployment replica |
| 101 | + for i in range(num_tpu_chips): |
| 102 | + pg_resources.append({"CPU": 1, "TPU": 1}) # for the vLLM actors |
| 103 | + |
| 104 | + # Use PACK strategy since the deployment may use more than one TPU node. |
| 105 | + return VLLMDeployment.options( |
| 106 | + placement_group_bundles=pg_resources, |
| 107 | + placement_group_strategy="PACK").bind(model_id, num_tpu_chips, get_max_model_len(), get_tokenizer_mode(), get_dtype()) |
| 108 | + |
| 109 | +model = build_app({}) |
0 commit comments