This repository provides access to the RoCoG-v2 gesture recognition dataset introduced in the ICRA 2023 paper "Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances."
RoCoG-v2 (Robot Control Gestures) is a dataset intended to support the study of synthetic-to-real and ground-to-air video domain adaptation. It contains over 100K synthetically-generated videos of human avatars performing gestures from seven (7) classes. It also provides videos of real humans performing the same gestures from both ground and air perspectives.
All of the data for RoCoG-v2 can be found here. Each type of data is provided in a separate zip file.
You may download the data through the browser or using the following command:
wget https://www.cis.jhu.edu/~rocog/data/<FILENAME>
Replace <FILENAME> in the above command with a filename from the table below corresponding to the data type you wish to download.
Filename | Description |
---|---|
syn_ground.zip | Synthetic videos rendered from the ground perspective |
syn_air.zip | Synthetic videos rendered from the air perspective (static hover) |
syn_orbital.zip* | Synthetic videos rendered from the air perspective (orbiting the subject) |
real_ground.zip | Real cropped videos collected from the ground perspective |
real_air.zip | Real cropped videos collected from the air perspective |
real_uncropped.zip | Uncropped versions of the real ground and air videos |
* Our paper does not provide experimental results with this data type.
Data Type | View | Train | Test | Total |
---|---|---|---|---|
Synthetic | Ground | 53,438 | - | 53,438 |
Synthetic | Air | 53,558 | - | 53,558 |
Real | Ground | 204 | 100 | 304 |
Real | Air | 87 | 91 | 178 |
.
├── annotations
├── real
│ ├── air
│ │ ├── Advance
│ │ ├── Attention
│ │ ├── FollowMe
│ │ ├── Halt
│ │ ├── MoveForward
│ │ ├── MoveInReverse
│ │ └── Rally
│ └── ground
│ ├── Advance
│ ├── Attention
│ ├── FollowMe
│ ├── Halt
│ ├── MoveForward
│ ├── MoveInReverse
│ └── Rally
└── syn
├── air
│ ├── Advance
│ ├── Attention
│ ├── FollowMe
│ ├── Halt
│ ├── MoveForward
│ ├── MoveInReverse
│ └── Rally
└── ground
├── Advance
├── Attention
├── FollowMe
├── Halt
├── MoveForward
├── MoveInReverse
└── Rally
If you use this dataset in your work, please cite our ICRA 2023 paper:
bibtex
@inproceedings{2023rocogv2,
title={Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances},
author={Reddy, Arun V and Shah, Ketul and Paul, William and Mocharla, Rohita and Hoffman, Judy and Katyal, Kapil D and Manocha, Dinesh and de Melo, Celso M and Chellappa, Rama},
booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
pages={},
year={2023},
organization={IEEE}
}
APA
Reddy, A. V., Shah, K., Paul, W., Mocharla, R., Hoffman, J., Katyal, K. D., Manocha, D., de Melo, C. M., & Chellappa, R. (2023). Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances. IEEE International Conference on Robotics and Automation (ICRA).
IEEE
A. V. Reddy et al., “Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances,” in IEEE International Conference on Robotics and Automation (ICRA), 2023.