Skip to content

RoCoG-v2 (Robot Control Gestures) is a dataset intended to support the study of synthetic-to-real and ground-to-air video domain adaptation.

Notifications You must be signed in to change notification settings

reddyav1/RoCoG-v2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Robot Control Gestures (RoCoG-v2)

This repository provides access to the RoCoG-v2 gesture recognition dataset introduced in the ICRA 2023 paper "Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances."

RoCoG-v2 (Robot Control Gestures) is a dataset intended to support the study of synthetic-to-real and ground-to-air video domain adaptation. It contains over 100K synthetically-generated videos of human avatars performing gestures from seven (7) classes. It also provides videos of real humans performing the same gestures from both ground and air perspectives.

rocog_gestures

Downloading the Dataset

All of the data for RoCoG-v2 can be found here. Each type of data is provided in a separate zip file.

You may download the data through the browser or using the following command:

wget https://www.cis.jhu.edu/~rocog/data/<FILENAME>

Replace <FILENAME> in the above command with a filename from the table below corresponding to the data type you wish to download.

Filename Description
syn_ground.zip Synthetic videos rendered from the ground perspective
syn_air.zip Synthetic videos rendered from the air perspective (static hover)
syn_orbital.zip* Synthetic videos rendered from the air perspective (orbiting the subject)
real_ground.zip Real cropped videos collected from the ground perspective
real_air.zip Real cropped videos collected from the air perspective
real_uncropped.zip Uncropped versions of the real ground and air videos

* Our paper does not provide experimental results with this data type.

Dataset Details

Number of Videos across Splits

Data Type View Train Test Total
Synthetic Ground 53,438 - 53,438
Synthetic Air 53,558 - 53,558
Real Ground 204 100 304
Real Air 87 91 178

Dataset Directory Structure

.
├── annotations
├── real
│   ├── air
│   │   ├── Advance
│   │   ├── Attention
│   │   ├── FollowMe
│   │   ├── Halt
│   │   ├── MoveForward
│   │   ├── MoveInReverse
│   │   └── Rally
│   └── ground
│       ├── Advance
│       ├── Attention
│       ├── FollowMe
│       ├── Halt
│       ├── MoveForward
│       ├── MoveInReverse
│       └── Rally
└── syn
    ├── air
    │   ├── Advance
    │   ├── Attention
    │   ├── FollowMe
    │   ├── Halt
    │   ├── MoveForward
    │   ├── MoveInReverse
    │   └── Rally
    └── ground
        ├── Advance
        ├── Attention
        ├── FollowMe
        ├── Halt
        ├── MoveForward
        ├── MoveInReverse
        └── Rally

Citation

If you use this dataset in your work, please cite our ICRA 2023 paper:

bibtex

@inproceedings{2023rocogv2,
  title={Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances},
  author={Reddy, Arun V and Shah, Ketul and Paul, William and Mocharla, Rohita and Hoffman, Judy and Katyal, Kapil D and Manocha, Dinesh and de Melo, Celso M and Chellappa, Rama},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  pages={},
  year={2023},
  organization={IEEE}
}

APA

Reddy, A. V., Shah, K., Paul, W., Mocharla, R., Hoffman, J., Katyal, K. D., Manocha, D., de Melo, C. M., & Chellappa, R. (2023). Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances. IEEE International Conference on Robotics and Automation (ICRA).

IEEE

A. V. Reddy et al., “Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances,” in IEEE International Conference on Robotics and Automation (ICRA), 2023.

About

RoCoG-v2 (Robot Control Gestures) is a dataset intended to support the study of synthetic-to-real and ground-to-air video domain adaptation.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages