Skip to content

Commit

Permalink
DOC-4199: add TCEs to the combined query page (#3380)
Browse files Browse the repository at this point in the history
Co-authored-by: Vladyslav Vildanov <117659936+vladvildanov@users.noreply.github.com>
  • Loading branch information
dwdougherty and vladvildanov authored Oct 16, 2024
1 parent 17db62e commit d6ddb0d
Showing 1 changed file with 124 additions and 0 deletions.
124 changes: 124 additions & 0 deletions doctests/query_combined.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
# EXAMPLE: query_combined
# HIDE_START
import json
import numpy as np
import redis
import warnings
from redis.commands.json.path import Path
from redis.commands.search.field import NumericField, TagField, TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
from redis.commands.search.query import Query
from sentence_transformers import SentenceTransformer


def embed_text(model, text):
return np.array(model.encode(text)).astype(np.float32).tobytes()

warnings.filterwarnings("ignore", category=FutureWarning, message=r".*clean_up_tokenization_spaces.*")
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
query = "Bike for small kids"
query_vector = embed_text(model, query)

r = redis.Redis(decode_responses=True)

# create index
schema = (
TextField("$.description", no_stem=True, as_name="model"),
TagField("$.condition", as_name="condition"),
NumericField("$.price", as_name="price"),
VectorField(
"$.description_embeddings",
"FLAT",
{
"TYPE": "FLOAT32",
"DIM": 384,
"DISTANCE_METRIC": "COSINE",
},
as_name="vector",
),
)

index = r.ft("idx:bicycle")
index.create_index(
schema,
definition=IndexDefinition(prefix=["bicycle:"], index_type=IndexType.JSON),
)

# load data
with open("data/query_vector.json") as f:
bicycles = json.load(f)

pipeline = r.pipeline(transaction=False)
for bid, bicycle in enumerate(bicycles):
pipeline.json().set(f'bicycle:{bid}', Path.root_path(), bicycle)
pipeline.execute()
# HIDE_END

# STEP_START combined1
q = Query("@price:[500 1000] @condition:{new}")
res = index.search(q)
print(res.total) # >>> 1
# REMOVE_START
assert res.total == 1
# REMOVE_END
# STEP_END

# STEP_START combined2
q = Query("kids @price:[500 1000] @condition:{used}")
res = index.search(q)
print(res.total) # >>> 1
# REMOVE_START
assert res.total == 1
# REMOVE_END
# STEP_END

# STEP_START combined3
q = Query("(kids | small) @condition:{used}")
res = index.search(q)
print(res.total) # >>> 2
# REMOVE_START
assert res.total == 2
# REMOVE_END
# STEP_END

# STEP_START combined4
q = Query("@description:(kids | small) @condition:{used}")
res = index.search(q)
print(res.total) # >>> 0
# REMOVE_START
assert res.total == 0
# REMOVE_END
# STEP_END

# STEP_START combined5
q = Query("@description:(kids | small) @condition:{new | used}")
res = index.search(q)
print(res.total) # >>> 0
# REMOVE_START
assert res.total == 0
# REMOVE_END
# STEP_END

# STEP_START combined6
q = Query("@price:[500 1000] -@condition:{new}")
res = index.search(q)
print(res.total) # >>> 2
# REMOVE_START
assert res.total == 2
# REMOVE_END
# STEP_END

# STEP_START combined7
q = Query("(@price:[500 1000] -@condition:{new})=>[KNN 3 @vector $query_vector]").dialect(2)
# put query string here
res = index.search(q,{ 'query_vector': query_vector })
print(res.total) # >>> 2
# REMOVE_START
assert res.total == 2
# REMOVE_END
# STEP_END

# REMOVE_START
# destroy index and data
r.ft("idx:bicycle").dropindex(delete_documents=True)
# REMOVE_END

0 comments on commit d6ddb0d

Please sign in to comment.