Skip to content
View retagnn's full-sized avatar

Block or report retagnn

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
retagnn/README.md

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

Pytorch based implemention of Relational Temporal Attentive Graph NeuralNetworks for recommender systems, based on our paper:

Cheng HSU, Cheng-Te Li, Relational Temporal Attentive Graph NeuralNetworks (2021)

Requirements

  • Python 3.6
  • Pytorch (1.4)

Usage

To reproduce the experiments mentioned in the paper you can run the following command:

python train.py

Note: .

Cite

Please cite our paper if you use this code in your own work:

@article{vdberg2021graph,
  title={RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendationn},
  author={Cheng Hsu and Cheng-Te Li},
  journal={arXiv preprint arXiv:2101.12457},
  year={2021}
}

Popular repositories Loading

  1. RetaGNN RetaGNN Public

    Python 31 11

  2. RetaGNN-Relational-Temporal-Attentive-Graph-NeuralNetworks-for-Holistic-Sequential-Recommendatio RetaGNN-Relational-Temporal-Attentive-Graph-NeuralNetworks-for-Holistic-Sequential-Recommendatio Public