Skip to content

richardsun-voyager/inibr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implicit N-grams Induced by Recurrence

In this work, we present a study that shows there actually exist some explainable components that reside within the hidden states, which are reminiscent of the classical n-grams features. We evaluated such extracted explainable features from trained RNNs on downstream sentiment analysis tasks and found they could be used to model interesting linguistic phenomena such as negation and intensification. Furthermore, we examined the efficacy of using such n-gram components alone as encoders on tasks such as sentiment analysis and language modeling, revealing they could be playing important roles in contributing to the overall performance of RNNs. For more details about the n-gram representations, please refer to the paper https://arxiv.org/abs/2205.02724.

To run the code, please open the corresponding jupyter notebook file.

  • For sentiment analysis, please launch and run the file "RNN_classification.ipynb".
  • For relation classification, please launch and run the file "RNN_relation_classification(semeval2010-8).ipynb".
  • For NER, please launch and run the file "RNN_NER_CRF_IOBES.ipynb" (Please download the dataset from https://www.ldc.upenn.edu/).
  • For the n-gram analysis, please launch and run the file "RNN_ngram_phenomena_analysis.ipynb".

About

Investigating how RNNs capture ngrams

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published