Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: Replace deprecated usage of readout_data with get_register_map #1692

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ p += MEASURE(0, ro[0])
p += MEASURE(1, ro[1])
p.wrap_in_numshots_loop(10)

qvm.run(p).readout_data['ro'].tolist()
qvm.run(p).get_register_map()['ro'].tolist()
```

The output of the above program should look something like the following,
Expand Down
4 changes: 2 additions & 2 deletions docs/source/advanced_usage.rst
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ Below is an example that demonstrates how to use pyQuil in a multithreading scen


def run(program: Program):
return qc.run(qc.compile(program)).readout_data.get("ro")
return qc.run(qc.compile(program)).get_register_map().get("ro")


programs = [
Expand Down Expand Up @@ -396,7 +396,7 @@ We can run this program a few times to see what we get in the readout register `
qc = get_qc("2q-qvm")
branching_prog.wrap_in_numshots_loop(10)
result = qc.run(branching_prog)
print(result.readout_data['test_register'])
print(result.get_register_map()['test_register'])

.. testoutput:: control-flow
:hide:
Expand Down
4 changes: 2 additions & 2 deletions docs/source/getting_started.rst
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ an entangled state between qubits 0 and 1 (that's what the "CNOT" gate does). Fi

# run the program on a QVM
qc = get_qc('9q-square-qvm')
result = qc.run(qc.compile(p)).readout_data.get("ro")
result = qc.run(qc.compile(p)).get_register_map().get("ro")
print(result[0])
print(result[1])

Expand Down Expand Up @@ -182,7 +182,7 @@ the terminal windows where your servers are running, you should see output print

with local_forest_runtime():
qvm = get_qc('9q-square-qvm')
bitstrings = qvm.run(qvm.compile(prog)).readout_data.get("ro")
bitstrings = qvm.run(qvm.compile(prog)).get_register_map().get("ro")

In the following sections, we'll cover gates, program construction & execution, and go into detail about our Quantum
Virtual Machine, our QPUs, noise models and more. Let's start with the :ref:`basics`.
2 changes: 1 addition & 1 deletion docs/source/introducing_v4.rst
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ you should use the ``get_raw_readout_data`` method to access the raw data and bu
result = qc.run(exe)

try:
matrix = result.readout_data
matrix = result.get_register_map()
except RegisterMatrixConversionError:
matrix = process_raw_data(result.get_raw_readout_data())

Expand Down
16 changes: 8 additions & 8 deletions docs/source/noise.rst
Original file line number Diff line number Diff line change
Expand Up @@ -376,7 +376,7 @@ state decays to the :math:`\ket{0}` state.
p.define_noisy_gate("I", [0], append_damping_to_gate(np.eye(2), damping_per_I))
p.wrap_in_numshots_loop(trials)
qc.qam.random_seed = int(num_I)
res = qc.run(p).readout_data.get("ro")
res = qc.run(p).get_register_map().get("ro")
results_damping.append([np.mean(res), np.std(res) / np.sqrt(trials)])

results_damping = np.array(results_damping)
Expand Down Expand Up @@ -537,7 +537,7 @@ good starting point.**
p.define_noisy_gate("CZ", [0, 1], corrupted_CZ)
p.wrap_in_numshots_loop(trials)
qc.qam.random_seed = jj
res = qc.run(p).readout_data.get("ro")
res = qc.run(p).get_register_map().get("ro")
results.append(res)

results = np.array(results)
Expand Down Expand Up @@ -706,7 +706,7 @@ gate noise, respectively.
MEASURE(0, ("ro", 0)),
MEASURE(1, ("ro", 1)),
])
bitstrings = qc.run(noisy).readout_data.get("ro")
bitstrings = qc.run(noisy).get_register_map().get("ro")

# Expectation of Z0 and Z1
z0, z1 = 1 - 2*np.mean(bitstrings, axis=0)
Expand Down Expand Up @@ -1002,7 +1002,7 @@ Example 1: Rabi sequence with noisy readout
p.define_noisy_readout(0, p00=p00, p11=p00)
ro = p.declare("ro", "BIT", 1)
p.measure(0, ro[0])
res = qc.run(p).readout_data.get("ro")
res = qc.run(p).get_register_map().get("ro")
results_rabi[jj, kk] = np.sum(res)

.. parsed-literal::
Expand Down Expand Up @@ -1149,7 +1149,7 @@ Pauli-Z moments that indicate the qubit correlations are corrupted (and correcte
)
ghz_prog.wrap_in_numshots_loop(10000)
print(ghz_prog)
results = qc.run(ghz_prog).readout_data.get("ro")
results = qc.run(ghz_prog).get_register_map().get("ro")

.. testoutput:: readout-noise

Expand All @@ -1167,7 +1167,7 @@ Pauli-Z moments that indicate the qubit correlations are corrupted (and correcte
noisy_ghz = header + ghz_prog
noisy_ghz.wrap_in_numshots_loop(10000)
print(noisy_ghz)
noisy_results = qc.run(noisy_ghz).readout_data.get("ro")
noisy_results = qc.run(noisy_ghz).get_register_map().get("ro")

.. testoutput:: readout-noise

Expand Down Expand Up @@ -1374,9 +1374,9 @@ we should always measure ``1``.

qc = get_qc("1q-qvm")
print("Without Noise:")
print(qc.run(p).readout_data.get("ro"))
print(qc.run(p).get_register_map().get("ro"))
print("With Noise:")
print(noisy_qc.run(p).readout_data.get("ro"))
print(noisy_qc.run(p).get_register_map().get("ro"))

.. testoutput:: global-error
:hide:
Expand Down
4 changes: 2 additions & 2 deletions docs/source/programs_and_gates.rst
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ program on the Quantum Virtual Machine (QVM). We just have to add a few lines to
qc = get_qc('1q-qvm') # You can make any 'nq-qvm' this way for any reasonable 'n'
executable = qc.compile(p)
result = qc.run(executable)
bitstrings = result.readout_data.get('ro')
bitstrings = result.get_register_map().get('ro')
print(bitstrings)

Congratulations! You just ran your program on the QVM. The returned value should be:
Expand Down Expand Up @@ -310,7 +310,7 @@ filled in for, say, 200 values between :math:`0` and :math:`2\pi`. We demonstrat
memory_map = {"theta": [theta]}

# Get the results of the run with the value we want to execute with
bitstrings = qc.run(executable, memory_map=memory_map).readout_data.get("ro")
bitstrings = qc.run(executable, memory_map=memory_map).get_register_map().get("ro")

# Store our results
parametric_measurements.append(bitstrings)
Expand Down
Loading