Skip to content

[IEEE SPL] Official Implementation for Pose-promote: Progressive Visual Perception for Indoor Action Recognition

Notifications You must be signed in to change notification settings

rikeilong/Ppromo-IAR

Repository files navigation

Pose-promote: Progressive Visual Perception for Indoor Action Recognition

This repo is the official repository of "Pose-promote: Progressive Visual Perception for Indoor Action Recognition"

Dependencies

  • Pytorch≥1.10 with CUDA≥11.3
  • numpy
  • opencv-python
  • pickle
  • glob

Dataset

Please prepare your dataset as the following structure (e.g., Toyata Smarthome):

-frames
    -Cook.Cleandishes_p02_r00_v02_c03
        - 1.jpeg
        - ...
        - L.jpeg
    -Cook.Cleandishes_p02_r00_v14_c03
        - 1.jpeg
        - ...
        - L.jpeg
    - ...

    -Walk_p13_r04_v05_c04
        - 1.jpeg
        - ...
        - L.jpeg

-pose
    -xsub
        - train_data_bone.npy
        - train_data_joint.npy
        - train_label.pkl
        - val_data_bone.npy
        - val_data_joint.npy
        - val_label.pkl
    -xview1
        - train_data_bone.npy
        - train_data_joint.npy
        - train_label.pkl
        - val_data_bone.npy
        - val_data_joint.npy
        - val_label.pkl
    -xview2
        - train_data_bone.npy
        - train_data_joint.npy
        - train_label.pkl
        - val_data_bone.npy
        - val_data_joint.npy
        - val_label.pkl

-pose_train
    -config
        -smarthome-cs
            - train_jonit.yaml
            - train_bone.yaml
            - test_jonit.yaml
            - test_bone.yaml
        - ...

-config
    -smarthome-cs
        - train.yaml
        - test.yaml
    - ...

Visual Feature Extraction

-extract_visual_feat_14x14
    -extract_14x14_feat.py
  • Extraction
cd extract_visual_feat_14x14
python extract_14x14_feat.py --output_dir /mnt/sda/smarthome_res18_14x14 --video_path /home/qilang/PythonProjects/ICME/frames/ --model resnet18

Get Started (Take Toyota Smarthome Dataset as example)

First, we need to train the pose encoder individually. For more information, please go to CTR-GCN

  • Training
cd Ppromo-IAR
python /pose_train/main.py --config /pose_train/config/smarthome-cs/train_jonit.yaml
python run.py --config /config/smarthome-cs/train.yaml --save /weights/
  • Testing
cd Ppromo-IAR
python test.py --config /config/smarthome-cs/test.yaml --model /weights/xxx.pt

Visualization

image1 image2

Note

Citation

Please cite the following paper if you use this repository in your reseach.

Contact

For any questions, feel free to contact: lll5698@foxmail.com

About

[IEEE SPL] Official Implementation for Pose-promote: Progressive Visual Perception for Indoor Action Recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages