This repo is the official repository of "Pose-promote: Progressive Visual Perception for Indoor Action Recognition"
- Pytorch≥1.10 with CUDA≥11.3
- numpy
- opencv-python
- pickle
- glob
Please prepare your dataset as the following structure (e.g., Toyata Smarthome):
-frames
-Cook.Cleandishes_p02_r00_v02_c03
- 1.jpeg
- ...
- L.jpeg
-Cook.Cleandishes_p02_r00_v14_c03
- 1.jpeg
- ...
- L.jpeg
- ...
-Walk_p13_r04_v05_c04
- 1.jpeg
- ...
- L.jpeg
-pose
-xsub
- train_data_bone.npy
- train_data_joint.npy
- train_label.pkl
- val_data_bone.npy
- val_data_joint.npy
- val_label.pkl
-xview1
- train_data_bone.npy
- train_data_joint.npy
- train_label.pkl
- val_data_bone.npy
- val_data_joint.npy
- val_label.pkl
-xview2
- train_data_bone.npy
- train_data_joint.npy
- train_label.pkl
- val_data_bone.npy
- val_data_joint.npy
- val_label.pkl
-pose_train
-config
-smarthome-cs
- train_jonit.yaml
- train_bone.yaml
- test_jonit.yaml
- test_bone.yaml
- ...
-config
-smarthome-cs
- train.yaml
- test.yaml
- ...
-extract_visual_feat_14x14
-extract_14x14_feat.py
- Extraction
cd extract_visual_feat_14x14
python extract_14x14_feat.py --output_dir /mnt/sda/smarthome_res18_14x14 --video_path /home/qilang/PythonProjects/ICME/frames/ --model resnet18
First, we need to train the pose encoder individually. For more information, please go to CTR-GCN
- Training
cd Ppromo-IAR
python /pose_train/main.py --config /pose_train/config/smarthome-cs/train_jonit.yaml
python run.py --config /config/smarthome-cs/train.yaml --save /weights/
- Testing
cd Ppromo-IAR
python test.py --config /config/smarthome-cs/test.yaml --model /weights/xxx.pt
Please cite the following paper if you use this repository in your reseach.
For any questions, feel free to contact: lll5698@foxmail.com