RingCentral Metrics Facade is a Java library for working with metrics,
allowing extremely flexible configuration of metrics and their export,
designed to be generic and not tied to a specific implementation.
- Main Features Overview
- Getting Started
- Features
- Metrics
- Metrics Reporters
- Metrics Producers
- Integration
- License
You can set up defaults and overrides for any subset of metrics
(by using a predicate) and almost any metric parameters.
In particular, you can specify a set of values to be calculated and exported.
For example, the implementation of a metric is not required to perform an expensive operation of
calculating percentiles, if percentiles are not included in the set of values defined for this metric.
See Getting Started for details and usage examples.
In particular, Metrics Facade supports eviction and expiration for labeled metrics,
that is, for each labeled metric, it allows you to specify:
- the maximum number of combinations of label values:
when this threshold is exceeded, the combination that has not been updated for the longest time,
will be automatically removed (will not waste system resources) - the expiration time for a combination of label values:
if a combination has not been updated during this time, it will be automatically removed
See Getting Started for details and usage examples.
Let us first introduce some important concepts that
we will use in this section and throughout the document.
Measurable value is a typed value that can be measured.
Examples: the number of requests processed, the number of requests
processed with errors, the average request processing time,
the amount of free memory, the number of items in the queue.
Each measurable value has a type.
Measurable value types are represented by subclasses of Measurable
.
Examples:
Counter.COUNT
(the number of requests processed)Histogram.MEAN
(the average request processing time)Var.Value
(the amount of free memory)
Metric is a typed named entity measuring a certain set of Measurable
s,
and providing the results of the measurements.
Each metric has a type that supports a certain set of Measurable
s and
a certain way of measuring them.
Metric types are represented by subclasses of Metric
.
Examples:
-
Counter is a
java.lang.Long
based counter,
measuring exactly one value - the current value of the counter (Counter.COUNT
).
The measurement is performed by explicitly increasing or decreasing the counter:Counter requestErrorCounter = ... // COUNT = 0 requestErrorCounter.inc(); // COUNT = 1 requestErrorCounter.inc(2); // COUNT = 3 requestErrorCounter.dec(2); // COUNT = 1
-
Timer measures the number of times something happens,
the speed at which it happens (rate), and the statistical distribution of its duration:Counter.COUNT
(the number of times something happens)Rate.MEAN_RATE
(the mean rate)Rate.ONE_MINUTE_RATE
Rate.FIVE_MINUTES_RATE
Rate.FIFTEEN_MINUTES_RATE
Rate.RATE_UNIT
Histogram.MIN
(the min duration)Histogram.MAX
(the max duration)Histogram.MEAN
(the mean duration)Histogram.STANDARD_DEVIATION
Histogram.Percentile
(including the predefinedPERCENTILE_5
,PERCENTILE_10
, ...)Timer.DURATION_UNIT
The measurement is performed by explicitly taking into account the durations:
// Histogram.MAX = 0.0 // Histogram.MEAN = 0.0 Timer requestTimer = ... // Histogram.MAX = 10.0 // Histogram.MEAN = 10.0 requestTimer.update(10, NANOSECONDS); // Histogram.MAX = 20.0 // Histogram.MEAN = 15.0 requestTimer.update(20, NANOSECONDS); // Histogram.MAX = 30.0 // Histogram.MEAN = 20.0 requestTimer.update(30, NANOSECONDS);
Each metric has a name represented by the MetricName
class.
Metric
does not provide measurement results directly.
Instead, Metric
provides the set of its instances (MetricInstance
),
which, in turn, provide measurement results:
interface Metric extends Iterable<MetricInstance> {
...
}
interface MetricInstance {
...
Set<Measurable> measurables();
<V> V valueOf(Measurable measurable) throws NotMeasuredException;
}
This design has been driven by the need to support labeled metrics.
Labeled metric is a metric with which a set of attributes (labels) is associated,
and which generates a separate "child" metric (represented by a MetricInstance
)
for each involved (for which there was at least one update) combination of values of these attributes.
Let us explain this definition with the following example 1,
that we will use and develop throughout this section.
Assume you are developing an HTTP service that, in order to do its job, calls several other HTTP services.
Each of the external services is represented by several instances running on specific servers and ports.
The service being developed can call any of these instances.
(for example, by using round-robin balancing).
Let us also assume that we would like to have a separate request execution Timer
for each instance of an external service (that is, for each combination of service, server, and port
for which at least one request has been made).
In other words, we would like to define a labeled Timer with the
labels service, server, port (taking into account the order of the labels).
Let us now return to the concept of a metric instance (MetricInstance
), and consider it in more detail.
Instances are identified by a name (MetricName
) which always starts with the metric's name (MetricName
)
and a list of label values (LabelValue
).
There is also the set of Measurable
s associated with an instance.
The instance allows you to get the value of any Measurable
from this set (see instance.valueOf(m)
below):
Counter counter = registry.counter(withName("counter"));
counter.inc();
counter.inc(2);
counter.dec();
counter.addListener(new MetricListener() {
@Override
public void metricInstanceAdded(MetricInstance instance) {
List<String> labelValuesString = instance.labelValues().stream()
.map(lv -> lv.label().name() + "=" + lv.value())
.collect(toList());
String valuesString = "{" + instance.measurables().stream()
.map(m -> m.getClass().getSimpleName() + "=" + instance.valueOf(m))
.collect(joining(", ")) + "}";
// You can also use the following "snapshot-based" approach for getting values:
//
// MeasurableValues values = instance.measurableValues();
// values.valueOf(m);
System.out.println(
"Metric instance added:\n"
+ " name = '" + instance.name() + "',\n"
+ " label values = " + instance.labelValues() + ",\n"
+ " total instance = " + instance.isTotalInstance() + ",\n"
+ " labeled metric total instance = " + instance.isLabeledMetricTotalInstance() + ",\n"
+ " level instance = " + instance.isLevelInstance() + ",\n"
+ " measurable values = " + valuesString);
}
@Override
public void metricInstanceRemoved(MetricInstance instance) {
System.out.println("Metric instance removed: name = '" + instance.name() + "'");
}
});
Output:
Metric instance added:
name = 'counter',
label values = [],
total instance = true,
labeled metric total instance = false,
level instance = false,
measurable values = {Count=2}
The lifetime of some instances coincides with the lifetime of the metric,
while others can be added or removed when certain conditions are met.
Being Iterable<MetricInstance>
, the metric provides the current set of instances (thread-safely).
This feature is used by most exporters (see below).
It's also possible to subscribe to the events metricInstanceAdded
and metricInstanceRemoved
.
This feature is used, for example, by JmxMetricsReporter
.
An update of a metric is taken into account by the corresponding subset of instances.
By default, only total instance is created along with the metric
(it can be disabled through metric configuration).
The total instance takes all updates into account.
The lifetime of the total instance is the same as the lifetime of the metric.
This is the only instance created for non-labeled metrics.
If the metric is labeled, an instance is created for each combination of LabelValue
s.
Such an instance takes into account only those updates that are made for the corresponding combination:
Histogram histogram = registry.histogram(
withName("histogram"),
() -> withHistogram()
.labels(SERVICE, SERVER, PORT)
.allSlice().noLevels());
// updates the total instance and the instance service_1/server_1_1/111
histogram.update(10, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
// updates the total instance and the instance service_1/server_1_12/121
histogram.update(20, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_2"), PORT.value("121")));
// updates the total instance and the instance service_2/server_2_1/211
histogram.update(30, forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("211")));
// updates the total instance and the instance service_2/server_2_1/212
histogram.update(40, forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("212")));
// instances are added asynchronously
Thread.sleep(25);
histogram.forEach(instance -> {
List<String> labelValuesString = instance.labelValues().stream()
.map(lv -> lv.label().name() + "=" + lv.value())
.collect(toList());
// "snapshot-based" approach for getting values
MeasurableValues values = instance.measurableValues();
String valuesString = "{" + instance.measurables().stream()
// or instance.valueOf(m) but this approach is not "snapshot-based"
// and should not be used unnecessarily
.map(m -> {
String name =
m instanceof Histogram.Percentile ?
"Percentile_" + ((Histogram.Percentile)m).quantileAsString() :
m.getClass().getSimpleName();
return name + "=" + values.valueOf(m);
})
.collect(joining(", ")) + "}";
System.out.println(
"Metric instance:\n"
+ " name = '" + instance.name() + "',\n"
+ " label values = " + labelValuesString + ",\n"
+ " total instance = " + instance.isTotalInstance() + ",\n"
+ " labeled metric total instance = " + instance.isLabeledMetricTotalInstance() + ",\n"
+ " level instance = " + instance.isLevelInstance() + ",\n"
+ " measurable values = " + valuesString);
});
Output:
Metric instance:
name = 'histogram',
label values = [],
total instance = true,
labeled metric total instance = true,
level instance = false,
measurable values = {Count=4, Max=40, Percentile_0.9=40.0, Percentile_0.99=40.0, Percentile_0.5=30.0, Mean=25.0, Min=10}
Metric instance:
name = 'histogram',
label values = [service=service_1, server=server_1_1, port=111],
total instance = false,
labeled metric total instance = false,
level instance = false,
measurable values = {Count=1, Max=10, Percentile_0.9=10.0, Percentile_0.99=10.0, Percentile_0.5=10.0, Mean=10.0, Min=10}
Metric instance:
name = 'histogram',
label values = [service=service_1, server=server_1_2, port=121],
total instance = false,
labeled metric total instance = false,
level instance = false,
measurable values = {Count=1, Max=20, Percentile_0.9=20.0, Percentile_0.99=20.0, Percentile_0.5=20.0, Mean=20.0, Min=20}
Metric instance:
name = 'histogram',
label values = [service=service_2, server=server_2_1, port=211],
total instance = false,
labeled metric total instance = false,
level instance = false,
measurable values = {Count=1, Max=30, Percentile_0.9=30.0, Percentile_0.99=30.0, Percentile_0.5=30.0, Mean=30.0, Min=30}
Metric instance:
name = 'histogram',
label values = [service=service_2, server=server_2_1, port=212],
total instance = false,
labeled metric total instance = false,
level instance = false,
measurable values = {Count=1, Max=40, Percentile_0.9=40.0, Percentile_0.99=40.0, Percentile_0.5=40.0, Mean=40.0, Min=4}
The life cycle of such an instance may end earlier the life cycle of the metric
in the case of an eviction or expiration (see Labeled metrics),
as well as in the case of deregistering a list of label values for a variable (see Var and Caching Var).
To manage metrics, a special entity is used - metric registry.
Metric registry allows you to add and remove metrics, get the current set of metrics, and
subscribe to an event of adding/removing a metric.
A metric registry is represented by the MetricRegistry
class.
MetricRegistry
implementations provide metric implementations.
Currently, the following implementations are supported:
DefaultMetricRegistry
DropwizardMetricRegistry
based on https://metrics.dropwizard.io
In the next versions, we plan to abandon this implementation in favor ofDefaultMetricRegistry
Let us move on to practice and show how to implement the requirements from example 1
using Metrics Facade. First, you need to add a number of dependencies:
Base (Core):
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-base</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
MetricRegistry
implementation (for example, DefaultMetricRegistry
):
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-default-impl</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
Metrics reporter(s) (for example, PrometheusMetricsExporter
):
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-prometheus</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
Let's add metrics.
At the moment, we have only one metric - a labeled Timer for requests to
external services with the labels service, server, and port.
A label is represented by the Label
class.
Let's define the labels:
Label SERVICE = new Label("service");
Label SERVER = new Label("server");
Label PORT = new Label("port");
and add the metric usingMetricRegistry
:
MetricRegistry registry = new DefaultMetricRegistry();
...
Timer httpClientRequestTimer = registry.timer(
withName("http", "client", "request", "duration"),
() -> withTimer().labels(SERVICE, SERVER, PORT));
The next step is to update the metric.
To do this, after executing a request to an external service,
it is necessary to record the time of its execution:
// in nanos
long requestDuration = ...
httpClientRequestTimer.update(
requestDuration,
forLabelValues(SERVICE.value("authorizationService"), SERVER.value("127.0.0.1"), PORT.value("7001"))))
You can also use the following recording scheme:
// start a stopwatch before executing the request
Stopwatch stopwatch = fullConfigTimer.stopwatch(forLabelValues(
SERVICE.value("authorizationService"),
SERVER.value("127.0.0.1"),
PORT.value("7001"))));
...
// stop the stopwatch after executing the request
stopwatch.stop()
Here the question may arise, what is measured?
By default, Timer measures the following values:
Counter.COUNT
Rate.MEAN_RATE
Rate.ONE_MINUTE_RATE
Rate.FIVE_MINUTES_RATE
Rate.FIFTEEN_MINUTES_RATE
Rate.RATE_UNIT
Histogram.MIN
Histogram.MAX
Histogram.MEAN
Histogram.PERCENTILE_50
Histogram.PERCENTILE_90
Histogram.PERCENTILE_99
Timer.DURATION_UNIT
However, Metrics Facade allows for extremely flexible configuration of metrics.
In particular, for each metric you can specify a set of values to be calculated and exported.
Suppose, for example, that you have multiple timers in your project, and for most of them
(and the number of timers in an average project can reach several dozen)
you want to measure Counter.COUNT
, Histogram.MAX
, Histogram.MEAN
, Histogram.PERCENTILE_90
,
but for the timer for processing incoming HTTP requests you want to also measure
Histogram.MIN
, Histogram.PERCENTILE_75
, Histogram.PERCENTILE_99
.
This can be achieved as follows:
-
Set the required default values for timers:
registry.preConfigure(allMetrics(), modifying().timer(withTimer().measurables( COUNT, MAX, MEAN, PERCENTILE_90)));
-
Set the required set of values when defining the timer for processing
incoming HTTP requests (the defaults will be overridden):Timer httpRequestTimer = registry.timer( withName("http", "request", "duration"), () -> withTimer().measurables( COUNT, MIN, MAX, MEAN, PERCENTILE_75, PERCENTILE_90, PERCENTILE_99)
or set the required default values for
Timer
with the appropriate name:registry.preConfigure( // there may also be other predicates (for example, metricsMatchingNameMask ("a.**.b")), // with which you can effectively configure any subset of metrics. metricWithName("http", "request", "duration"), modifying().timer(withTimer().measurables( COUNT, MIN, MAX, MEAN, PERCENTILE_75, PERCENTILE_90, PERCENTILE_99)));
This configuration scheme allows:
- Set the configuration in one place without having to change the code of defining each metric involved.
- Optimize calculations and export.
For example, the implementation of a metric is not required to perform an expensive operation of
calculating percentiles, if percentiles are not included in the set of values defined for this metric.
We plan to provide such implementations in one of the next major versions. - Add (in future versions) support for new measurable values without breaking backward compatibility.
Unlike most other libraries for working with metrics, the Metrics Facade interfaces do not provide
special methods for getting values of certain measured values (e.g.double Histogram.mean()
).
Instead, methods are used that takeMeasurable
as a parameter:
MetricInstance.valueOf(Measurable)
or
MetricInstance.measurableValues().valueOf(Measurable)
(a snapshot-based approach).
This design allows the library to remain extremely flexible in terms of supporting new features.
Let's add a counter of active client connections (sessions) to our project:
Counter activeClientConnectionCounter = registry.counter(withName("active", "client", "connections"));
Now we have two metrics.
These metrics live in memory, measuring certain values.
However, metrics are usually used to provide runtime information about an application instance.
In order to do this, it is necessary not only to collect metrics but also to export them to
external monitoring systems that provide various means of visualizing and analyzing the collected metrics.
For example, Prometheus (https://prometheus.io).
To export metrics, metrics reporters are used (Metrics Reporters).
Metrics reporter allows you to present metrics in the format of a specific monitoring system;
some reporters additionally send metrics to an external monitoring system in the appropriate format.
Let's add reporters for Prometheus and JMX:
PrometheusMetricsExporter prometheusExporter = new PrometheusMetricsExporter(registry);
new PrometheusHttpServer(9095, prometheusExporter); // This server is for tests only
registry.addListener(new JmxMetricsReporter());
Let's assume that the following metric updates have been made:
httpClientRequestTimer.update(
100L, MILLISECONDS,
forLabelValues(SERVICE.value("authorizationService"), SERVER.value("127.0.0.1"), PORT.value("7001")));
httpClientRequestTimer.update(
200L, MILLISECONDS,
forLabelValues(SERVICE.value("authorizationService"), SERVER.value("127.0.0.2"), PORT.value("7002")));
// start a stopwatch before executing the request
Stopwatch stopwatch = httpClientRequestTimer.stopwatch(forLabelValues(
SERVICE.value("throttlingService"),
SERVER.value("127.0.0.3"),
PORT.value("7003")));
sleep(300L);
// stop the stopwatch after executing the request
stopwatch.stop();
activeClientConnectionCounter.inc();
activeClientConnectionCounter.inc();
activeClientConnectionCounter.inc();
activeClientConnectionCounter.dec();
Let's take a look at (slightly modified and formatted for better readability)
the response of the test Prometheus server (http://localhost:9095/metrics):
# TYPE http_client_request_duration summary
http_client_request_duration_count{service="authorizationService",server="127.0.0.1",port="7001",} 1.0
http_client_request_duration{service="authorizationService",server="127.0.0.1",port="7001",quantile="0.9",} 100.0
http_client_request_duration{service="authorizationService",server="127.0.0.1",port="7001",quantile="0.99",} 100.0
http_client_request_duration{service="authorizationService",server="127.0.0.1",port="7001",quantile="0.5",} 100.0
http_client_request_duration_count{service="authorizationService",server="127.0.0.2",port="7002",} 1.0
http_client_request_duration{service="authorizationService",server="127.0.0.2",port="7002",quantile="0.9",} 200.0
http_client_request_duration{service="authorizationService",server="127.0.0.2",port="7002",quantile="0.99",} 200.0
http_client_request_duration{service="authorizationService",server="127.0.0.2",port="7002",quantile="0.5",} 200.0
http_client_request_duration_count{service="throttlingService",server="127.0.0.3",port="7003",} 1.0
http_client_request_duration{service="throttlingService",server="127.0.0.3",port="7003",quantile="0.9",} 300.692665
http_client_request_duration{service="throttlingService",server="127.0.0.3",port="7003",quantile="0.99",} 300.692665
http_client_request_duration{service="throttlingService",server="127.0.0.3",port="7003",quantile="0.5",} 300.692665
# TYPE http_client_request_duration_max gauge
http_client_request_duration_max{service="authorizationService",server="127.0.0.1",port="7001",} 100.0
http_client_request_duration_max{service="authorizationService",server="127.0.0.2",port="7002",} 200.0
http_client_request_duration_max{service="throttlingService",server="127.0.0.3",port="7003",} 300.692665
# TYPE http_client_request_duration_mean gauge
http_client_request_duration_mean{service="authorizationService",server="127.0.0.1",port="7001",} 100.0
http_client_request_duration_mean{service="authorizationService",server="127.0.0.2",port="7002",} 200.0
http_client_request_duration_mean{service="throttlingService",server="127.0.0.3",port="7003",} 300.692665
# TYPE active_client_connections gauge
active_client_connections 2.0
Now let's assume that the servers and ports for external services are not statically configured,
and are periodically requested from a special external service named "discoveryService".
Let's also assume that we would not want the duration of requests to this "auxiliary" service
to affect the statistics for other services ("business" services).
This can be achieved through exclusion of label values matching the corresponding predicate:
Timer httpClientRequestTimer = registry.timer(
withName("http", "client", "request", "duration"),
() -> withTimer()
.labels(SERVICE, SERVER, PORT)
.exclude(labelValuesMatchingAll(SERVICE.mask("discoveryService"))));
The following metric update will be ignored:
httpClientRequestTimer.update(
100L, MILLISECONDS,
forLabelValues(SERVICE.value("discoveryService"), SERVER.value("127.0.0.4"), PORT.value("7004")));
Further, since services are discovered dynamically,
the set of their server-port combinations can change over time.
The set of MetricInstance
s of the timer will, accordingly, grow indefinitely.
Some of the MetricInstance
s will represent non-existent servers, and because
they have already been exported to external monitoring systems, they are no longer needed,
but at the same time they continue to consume resources (for example, memory).
To solve this problem, Metrics Facade allows you to set for each metric:
- the maximum number of combinations of label values:
when this threshold is exceeded, the combination that has not been updated for the longest time,
will be automatically removed - the expiration time for a combination of label values:
if a combination has not been updated during this time, it will be automatically removed
For example:
Timer httpClientRequestTimer = registry.timer(
withName("http", "client", "request", "duration"),
() -> withTimer()
.labels(SERVICE, SERVER, PORT)
.exclude(labelValuesMatchingAll(SERVICE.mask("discoveryService")))
.maxLabeledInstancesPerSlice(100) // eviction
.expireLabeledInstanceAfter(30, SECONDS)); // expiration
Further, it would often be helpful to have:
- a total
MetricInstance
for each service
(taking all updates for this service into account) - a total
MetricInstance
for each service-server combination - a total
MetricInstance
for each server.
Let's also assume that for such an instance, it is sufficient to measure only
MAX
,MEAN
, andPERCENTILE_99
,
and it is necessary to consider only updates for services whose name either starts with "auth" or
contains the "throttling" substring, but at the same time exclude updates for port 7004
Metrics Facade offers the ability to automatically add this kind of
MetricInstance
s through the functionality of slices and levels.
Slice is a child metric that takes into account only those updates of the parent metric
which satisfy the given LabelValuesPredicate
.
A slice can have its own configuration: name suffix, labels
(MUST be sublist if the parent metric's labels), measurable values, etc.
By default, a metric has only one slice - AllSlice
taking all updates into account.
Slice level is a set of MetricInstance
s of the slice
for the first k
labels, k = 1..<label_count> - 1
.
For example, if for a slice:
- three labels are defined:
SERVICE
,SERVER
,PORT
- levels are enabled
then when updating this slice for the values
SERVICE.value("service_1")
, SERVER.value("server_1_1")
, PORT.value("111")
,
the following MetricInstance
s will be created/updated:
SERVICE.value("service_1")
,SERVER.value("server_1_1")
,PORT.value("111")
SERVICE.value("service_1")
,SERVER.value("server_1_1")
level instanceSERVICE.value("service_1")
level instance
By default, levels are enabled for AllSlice
and disabled for other slices.
Here is how you can implement the above requirements using the functionality of slices and levels:
Timer httpClientRequestTimer = registry.timer(
withName("http", "client", "request", "duration"),
() -> withTimer()
.labels(SERVICE, SERVER, PORT)
...
.allSlice()
.enableLevels() // enabled by default for AllSlice; implements 1) and 2)
.slice("by", "server") // implements 3)
.predicate(labelValuesMatchingAll(
SERVICE.mask("auth*|*throttling*"),
PORT.predicate(p -> !p.equals("7004"))))
.labels(SERVER)
.measurables(MAX, MEAN, PERCENTILE_99));
You can find the complete sample GettingStartedSample.java
in the following Maven module:
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-samples</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
You can set up defaults/overrides for any subset of metrics
(by using a predicate) and almost any metric parameters.
In particular, you can specify a set of values to be calculated and exported.
For example, the implementation of a metric is not required to perform an expensive operation of
calculating percentiles, if percentiles are not included in the set of values defined for this metric.
Example of setting up defaults (DefaultsSample.java
):
registry.preConfigure(allMetrics(), modifying()
.metric(withMetric().prefix(labelValues(SAMPLE.value("defaults"))))
.meter(withMeter()
.expireLabeledInstanceAfter(30, MINUTES)
.allSlice().noLevels())
.rate(withRate().measurables(COUNT, ONE_MINUTE_RATE))
.histogram(withHistogram().measurables(COUNT, MAX, MEAN, PERCENTILE_95))
.timer(withTimer().measurables(COUNT, ONE_MINUTE_RATE, MAX, MEAN, PERCENTILE_95)));
Example of setting up overrides (OverridesSample.java
):
registry.postConfigure(allMetrics(), modifying()
.metric(withMetric().prefix(labelValues(SAMPLE.value("overrides"))))
.meter(withMeter()
.expireLabeledInstanceAfter(30, MINUTES)
.allSlice().noLevels())
.rate(withRate().measurables(COUNT, ONE_MINUTE_RATE))
.histogram(withHistogram().measurables(COUNT, MAX, MEAN, PERCENTILE_95))
.timer(withTimer().measurables(COUNT, ONE_MINUTE_RATE, MAX, MEAN, PERCENTILE_95)));
...for any subset of metrics and almost any parameters:
registry.postConfigure(metricWithName("a.b.c"), modifying().metric(withMetric().disable()));
registry.postConfigure(metricsWithNamePrefix("a.b"), modifying().histogram(withHistogram().enable()));
registry.postConfigure(metricsMatchingNameMask("a.**.b"), modifying().histogram(withHistogram().enable()));
registry.postConfigure(
metrics()
.including(metricsMatchingNameMask("a.b.**.d.**")).excluding(metricWithName("a.b.c.d"))
.including(metricsWithNamePrefix("d.e.f")).excluding(metricsWithNamePrefix("d.e.f.g")),
modifying().meter(withMeter().disable()));
assert registry.timer(withName("a", "b", "c", "d")).isEnabled();
assert !registry.timer(withName("a", "b", "c", "d", "e")).isEnabled(); // disabled
assert !registry.timer(withName("a", "b", "x", "d")).isEnabled(); // disabled
assert !registry.timer(withName("d", "e", "f")).isEnabled(); // disabled
assert registry.timer(withName("d", "e", "f", "g")).isEnabled();
assert registry.timer(withName("d", "e", "f", "g", "h")).isEnabled();
See Getting Started, DefaultsSample.java
,
and OverridesSample.java
for more details and usage examples.
In particular, Metrics Facade supports eviction and expiration for labeled metrics,
that is, for each labeled metric, it allows you to specify:
- the maximum number of combinations of label values:
when this threshold is exceeded, the combination that has not been updated for the longest time,
will be automatically removed (will not waste system resources) - the expiration time for a combination of label values:
if a combination has not been updated during this time, it will be automatically removed
LabeledMetricsEvictionAndExpirationSample.java
registry.histogram(
withName("ActiveHealthChecker", "healthCheck", "attemptCount", "histogram"),
() -> withHistogram()
.labels(SERVICE, SERVER, PORT)
.maxLabeledInstancesPerSlice(5) // eviction
.expireLabeledInstanceAfter(1, MINUTES)); // expiration
See Getting Started and LabeledMetricsEvictionAndExpirationSample.java
for more details and usage examples.
registry.postConfigure(
metricsMatchingNameMask("ActiveHealthChecker.**"),
modifying().metric(withMetric().prefix(labelValues(SAMPLE.value("prefixLabelValues")))));
registry.histogram(
withName("ActiveHealthChecker", "healthCheck", "attemptCount", "histogram"),
() -> withHistogram().labels(SERVICE, SERVER, PORT));
h.update(25, forLabelValues(
SERVICE.value("service_1"),
SERVER.value("server_1_1"),
PORT.value("7001")));
is the same as
registry.histogram(
withName("ActiveHealthChecker", "healthCheck", "attemptCount", "histogram"),
() -> withHistogram().labels(SAMPLE, SERVICE, SERVER, PORT));
h.update(25, forLabelValues(
SAMPLE.value("prefixLabelValues"),
SERVICE.value("service_1"),
SERVER.value("server_1_1"),
PORT.value("7001")));
See PrefixLabelValuesSample.java
for more details and usage examples.
You can drop the metric updates for label values matching a predicate:
ExclusionsSample.java
registry.timer(
withName("ActiveHealthChecker", "healthCheck"),
() -> withTimer()
.labels(SERVICE, SERVER, PORT)
.exclude(labelValuesMatchingAny(
SERVER.mask("server_1_*|*2_1*"),
PORT.predicate(p -> p.equals("9001")))));
See Getting Started and ExclusionsSample.java
for more details and usage examples.
Slice is a child metric that takes into account only those updates of the parent metric
which satisfy the given LabelValuesPredicate
.
A slice can have its own configuration: name suffix, labels
(MUST be sublist if the parent metric's labels), measurable values, etc.
By default, a metric has only one slice - AllSlice
taking all updates into account.
Slice level is a set of MetricInstance
s of the slice
for the first k
labels, k = 1..<label_count> - 1
.
For example, if for a slice:
- three labels are defined:
SERVICE
,SERVER
,PORT
- levels are enabled
then when updating this slice for the values
SERVICE.value("service_1")
, SERVER.value("server_1_1")
, PORT.value("111")
,
the following MetricInstance
s will be created/updated:
SERVICE.value("service_1")
,SERVER.value("server_1_1")
,PORT.value("111")
SERVICE.value("service_1")
,SERVER.value("server_1_1")
level instanceSERVICE.value("service_1")
level instance
By default, levels are enabled for AllSlice
and disabled for other slices.
See Getting Started and SlicesAndLevelsSample.java
for more details and usage examples.
c.r.p.metrics.counter.Counter
is a java.lang.Long
based counter that can be increased or decreased:
CounterSample.java
// Default config:
// no labels
// measurables: { COUNT }
Counter defaultConfigCounter = registry.counter(withName("counter", "defaultConfig"));
defaultConfigCounter.inc();
defaultConfigCounter.inc(2);
defaultConfigCounter.dec();
Supported measurables:
Counter.COUNT
CounterSample.java
Counter fullConfigCounter = registry.counter(
withName("counter", "fullConfig"),
() -> withCounter()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no prefix label values
.prefix(labelValues(SAMPLE.value("counter")))
// default: no labels
.labels(SERVICE, SERVER, PORT)
// options: noExclusions()
// default: no exclusions
.exclude(labelValuesMatchingAny(
SERVICE.mask("serv*2|serv*4*"),
SERVER.mask("server_5")))
// default: unlimited
.maxLabeledInstancesPerSlice(5)
// options: notExpireLabeledInstances()
// default: no expiration
.expireLabeledInstanceAfter(25, SECONDS)
// options: noMeasurables()
// default: { COUNT }
.measurables(COUNT)
// the properties specific to the metrics implementation
// default: no properties
.put("key_1", "value_1_1")
.allSlice()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: the metric's labels [ SERVICE, SERVER, PORT ]
.labels(SERVICE, SERVER)
// options: noMaxLabeledInstances()
// default: the metric's maxLabeledInstancesPerSlice = 5
.maxLabeledInstances(10)
// options: notExpireLabeledInstances()
// default: the metric's expireLabeledInstanceAfter = 25 SECONDS
.expireLabeledInstanceAfter(42, SECONDS)
// options: noMeasurables()
// default: the metric's measurables { COUNT }
.measurables(COUNT)
// options: disableTotal(), noTotal(), totalEnabled(boolean)
// default: enabled
.enableTotal()
// options: disableLevels(), noLevels(), levelsEnabled(boolean)
// default: enabled
.enableLevels()
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_1"
.put("key_2", "value_2_1")
.total(counterInstance()
// default: empty name suffix
.name("total")
// options: noMeasurables()
// default: the slice's measurables { COUNT }
.measurables(COUNT)
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_2"
.put("key_2", "value_2_2")) // overrides "key_2" -> "value_2_1"
.slice("byService")
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no predicate
.predicate(labelValuesMatchingAll(
SERVICE.mask("serv*_1*"),
SERVER.predicate(s -> s.equals("server_1_1"))))
// default: no labels
.labels(SERVICE)
// options: noMaxLabeledInstances()
// default: the metric's maxLabeledInstancesPerSlice = 5
.maxLabeledInstances(2)
// options: notExpireLabeledInstances()
// default: the metric's expireLabeledInstanceAfter = 25 SECONDS
.expireLabeledInstanceAfter(42, SECONDS)
// options: noMeasurables()
// default: the metric's measurables { COUNT }
.measurables(COUNT)
// options: disableTotal(), noTotal(), totalEnabled(boolean)
// default: enabled
.enableTotal()
// options: disableLevels(), noLevels(), levelsEnabled(boolean)
// default: disabled
.enableLevels()
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_1"
.put("key_2", "value_2_1")
.total(counterInstance()
// default: empty name suffix
.name("total")
// options: noMeasurables()
// default: the slice's measurables { COUNT }
.measurables(COUNT)
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_2"
.put("key_2", "value_2_2")) // overrides "key_2" -> "value_2_1"
);
c.r.p.metrics.rate.Rate
measures the number of times something happens (Counter.COUNT
)
and the speed at which it happens
(for example, the number of requests per Rate.RATE_UNIT
).
Supported measurables:
Counter.COUNT
Rate.MEAN_RATE
Rate.ONE_MINUTE_RATE
Rate.FIVE_MINUTES_RATE
Rate.FIFTEEN_MINUTES_RATE
Rate.RATE_UNIT
RateSample.java
// Default config:
// no labels
// measurables: {
// COUNT,
// MEAN_RATE,
// ONE_MINUTE_RATE,
// FIVE_MINUTES_RATE,
// FIFTEEN_MINUTES_RATE,
// RATE_UNIT
// }
Rate defaultConfigRate = registry.rate(withName("rate", "defaultConfig"));
defaultConfigRate.mark();
defaultConfigRate.mark(2);
RateSample.java
Rate fullConfigRate = registry.rate(
withName("rate", "fullConfig"),
() -> withRate()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no prefix label values
.prefix(labelValues(SAMPLE.value("rate")))
// default: no labels
.labels(SERVICE, SERVER, PORT)
// options: noExclusions()
// default: no exclusions
.exclude(labelValuesMatchingAny(
SERVICE.mask("serv*2|serv*4*"),
SERVER.mask("server_5")))
// default: unlimited
.maxLabeledInstancesPerSlice(5)
// options: notExpireLabeledInstances()
// default: no expiration
.expireLabeledInstanceAfter(25, SECONDS)
// options: noMeasurables()
// default: {
// COUNT,
// MEAN_RATE,
// ONE_MINUTE_RATE,
// FIVE_MINUTES_RATE,
// FIFTEEN_MINUTES_RATE,
// RATE_UNIT
// }
.measurables(COUNT)
/**
* options:
* - expMovingAverage() == {@link ExpMovingAverageRateImplConfigBuilder#expMovingAverage()},
* - custom impl, e.g. countAndMean() == {@link CountScalingRateConfigBuilder#countScaling()}.
* Custom impls must be registered: registry.extendWith(new CountScalingRateConfigBuilder()).
* default: expMovingAverage()
*/
.impl(expMovingAverage())
// .impl(countScaling().factor(2)) // custom impl
// the properties specific to the metrics implementation
// default: no properties
.put("key_1", "value_1_1")
.allSlice()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: the metric's labels [ SERVICE, SERVER, PORT ]
.labels(SERVICE, SERVER)
// options: noMaxLabeledInstances()
// default: the metric's maxLabeledInstancesPerSlice = 5
.maxLabeledInstances(10)
// options: notExpireLabeledInstances()
// default: the metric's expireLabeledInstanceAfter = 25 SECONDS
.expireLabeledInstanceAfter(42, SECONDS)
// options: noMeasurables()
// default: the metric's measurables { COUNT }
.measurables(COUNT, MEAN_RATE)
// options: disableTotal(), noTotal(), totalEnabled(boolean)
// default: enabled
.enableTotal()
// options: disableLevels(), noLevels(), levelsEnabled(boolean)
// default: enabled
.enableLevels()
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_1"
.put("key_2", "value_2_1")
.total(rateInstance()
// default: empty name suffix
.name("total")
// options: noMeasurables()
// default: the slice's measurables { COUNT, MEAN_RATE }
.measurables(
COUNT,
MEAN_RATE, ONE_MINUTE_RATE, FIVE_MINUTES_RATE,
RATE_UNIT)
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_2"
.put("key_2", "value_2_2")) // overrides "key_2" -> "value_2_1"
.slice("byService")
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no predicate
.predicate(labelValuesMatchingAll(
SERVICE.mask("serv*_1*"),
SERVER.predicate(s -> s.equals("server_1_1"))))
// default: no labels
.labels(SERVICE)
// options: noMaxLabeledInstances()
// default: the metric's maxLabeledInstancesPerSlice = 5
.maxLabeledInstances(2)
// options: notExpireLabeledInstances()
// default: the metric's expireLabeledInstanceAfter = 25 SECONDS
.expireLabeledInstanceAfter(42, SECONDS)
// options: noMeasurables()
// default: the metric's measurables { COUNT }
.measurables(COUNT, ONE_MINUTE_RATE)
// options: disableTotal(), noTotal(), totalEnabled(boolean)
// default: enabled
.enableTotal()
// options: disableLevels(), noLevels(), levelsEnabled(boolean)
// default: disabled
.enableLevels()
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_1"
.put("key_2", "value_2_1")
.total(rateInstance()
// default: empty name suffix
.name("total")
// options: noMeasurables()
// default: the slice's measurables { COUNT, ONE_MINUTE_RATE }
.measurables(
COUNT,
MEAN_RATE, ONE_MINUTE_RATE, FIVE_MINUTES_RATE,
RATE_UNIT)
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_2"
.put("key_2", "value_2_2")) // overrides "key_2" -> "value_2_1"
);
c.r.p.metrics.histogram.Histogram
measures the statistical distribution of java.lang.Long
values.
HistogramSample.java
// Default config:
// no labels
// measurables: {
// COUNT,
// MIN,
// MAX,
// MEAN,
// PERCENTILE_50,
// PERCENTILE_90,
// PERCENTILE_99
// }
Histogram defaultConfigHistogram = registry.histogram(withName("histogram", "defaultConfig"));
defaultConfigHistogram.update(1L);
defaultConfigHistogram.update(2L);
Supported measurables:
Counter.COUNT
Histogram.MIN
Histogram.MAX
Histogram.MEAN
Histogram.STANDARD_DEVIATION
Histogram.Percentile
(including the predefinedHistogram.PERCENTILE_5
,Histogram.PERCENTILE_10
, ...)Histogram.Bucket
(including the predefinedHistogram.MS_10_BUCKET
,Histogram.SEC_1_BUCKET
, ...)
HistogramSample.java
Histogram fullConfigHistogram = registry.histogram(
withName("histogram", "fullConfig"),
() -> withHistogram()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no prefix label values
.prefix(labelValues(SAMPLE.value("histogram")))
// default: no labels
.labels(SERVICE, SERVER, PORT)
// options: noExclusions()
// default: no exclusions
.exclude(labelValuesMatchingAny(
SERVICE.mask("serv*2|serv*4*"),
SERVER.mask("server_5")))
// default: unlimited
.maxLabeledInstancesPerSlice(5)
// options: notExpireLabeledInstances()
// default: no expiration
.expireLabeledInstanceAfter(25, SECONDS)
// options: noMeasurables()
// default: {
// COUNT,
// MIN,
// MAX,
// MEAN,
// PERCENTILE_50,
// PERCENTILE_90,
// PERCENTILE_99
// }
.measurables(COUNT, MEAN)
// the properties specific to the metrics implementation
// default: no properties
.put("key_1", "value_1_1")
/**
* options:
* - hdr() == {@link HdrHistogramImplConfigBuilder#hdr()},
* - scale() == {@link com.ringcentral.platform.metrics.defaultImpl.histogram.scale.configs.ScaleHistogramImplConfigBuilder#scale()},
* - custom impl, e.g. countAndTotalSum() == {@link CountAndTotalSumScalingHistogramConfigBuilder#countAndTotalSumScaling()}.
* Custom impls must be registered: registry.extendWith(new CountAndTotalSumScalingHistogramConfigBuilder()).
* default: hdr()
*/
.impl(hdr()
.resetByChunks(6, Duration.ofMinutes(2))
.highestTrackableValue(1000, REDUCE_TO_HIGHEST_TRACKABLE)
.significantDigits(3)
.snapshotTtl(30, SECONDS))
// .impl(countAndTotalSumScaling().factor(2)) // custom impl
.allSlice()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: the metric's labels [ SERVICE, SERVER, PORT ]
.labels(SERVICE, SERVER)
// options: noMaxLabeledInstances()
// default: the metric's maxLabeledInstancesPerSlice = 5
.maxLabeledInstances(10)
// options: notExpireLabeledInstances()
// default: the metric's expireLabeledInstanceAfter = 25 SECONDS
.expireLabeledInstanceAfter(42, SECONDS)
// options: noMeasurables()
// default: the metric's measurables { COUNT, MEAN }
.measurables(COUNT, MEAN, MAX)
// options: disableTotal(), noTotal(), totalEnabled(boolean)
// default: enabled
.enableTotal()
// options: disableLevels(), noLevels(), levelsEnabled(boolean)
// default: enabled
.enableLevels()
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_1"
.put("key_2", "value_2_1")
.total(histogramInstance()
// default: empty name suffix
.name("total")
// options: noMeasurables()
// default: the slice's measurables { COUNT, MEAN, MAX }
.measurables(COUNT, MEAN, PERCENTILE_95, MAX, Bucket.of(1), Bucket.of(2))
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_2"
.put("key_2", "value_2_2")) // overrides "key_2" -> "value_2_1"
.slice("byService")
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no predicate
.predicate(labelValuesMatchingAll(
SERVICE.mask("serv*_1*"),
SERVER.predicate(s -> s.equals("server_1_1"))))
// default: no labels
.labels(SERVICE)
// options: noMaxLabeledInstances()
// default: the metric's maxLabeledInstancesPerSlice = 5
.maxLabeledInstances(2)
// options: notExpireLabeledInstances()
// default: the metric's expireLabeledInstanceAfter = 25 SECONDS
.expireLabeledInstanceAfter(42, SECONDS)
// options: noMeasurables()
// default: the metric's measurables { COUNT, MEAN }
.measurables(
COUNT,
TOTAL_SUM,
MEAN,
PERCENTILE_50,
PERCENTILE_95,
MAX,
Buckets.of(points(0, 1, 24, 25, 30, 49, 50, 55)))
// options: disableTotal(), noTotal(), totalEnabled(boolean)
// default: enabled
.enableTotal()
// options: disableLevels(), noLevels(), levelsEnabled(boolean)
// default: disabled
.enableLevels()
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_1"
.put("key_2", "value_2_1")
.total(histogramInstance()
// default: empty name suffix
.name("total")
// options: noMeasurables()
// default: the slice's measurables { COUNT, MEAN, PERCENTILE_50, PERCENTILE_95, MAX }
.measurables(COUNT, MIN, MEAN, MAX)
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_2"
.put("key_2", "value_2_2")) // overrides "key_2" -> "value_2_1"
);
c.r.p.metrics.timer.Timer
measures the number of times something happens,
the speed at which it happens (rate), and the statistical distribution of its duration.
In fact, it combines Rate
and Histogram
.
Supported measurables:
Counter.COUNT
Rate.MEAN_RATE
Rate.ONE_MINUTE_RATE
Rate.FIVE_MINUTES_RATE
Rate.FIFTEEN_MINUTES_RATE
Rate.RATE_UNIT
Histogram.MIN
Histogram.MAX
Histogram.MEAN
Histogram.STANDARD_DEVIATION
Histogram.Percentile
(including the predefinedHistogram.PERCENTILE_5
,Histogram.PERCENTILE_10
, ...)Histogram.Bucket
(including the predefinedHistogram.MS_10_BUCKET
,Histogram.SEC_1_BUCKET
, ...)Timer.DURATION_UNIT
TimerSample.java
Timer fullConfigTimer = registry.timer(
withName("timer", "fullConfig"),
() -> withTimer()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no prefix label values
.prefix(labelValues(SAMPLE.value("timer")))
// default: no labels
.labels(SERVICE, SERVER, PORT)
// options: noExclusions()
// default: no exclusions
.exclude(labelValuesMatchingAny(
SERVICE.mask("serv*2|serv*4*"),
SERVER.mask("server_5")))
// default: unlimited
.maxLabeledInstancesPerSlice(5)
// options: notExpireLabeledInstances()
// default: no expiration
.expireLabeledInstanceAfter(25, SECONDS)
// options: noMeasurables()
// default: {
// Counter.COUNT,
//
// Rate.MEAN_RATE,
// Rate.ONE_MINUTE_RATE,
// Rate.FIVE_MINUTES_RATE,
// Rate.FIFTEEN_MINUTES_RATE,
// Rate.RATE_UNIT,
//
// Histogram.MIN,
// Histogram.MAX,
// Histogram.MEAN,
// Histogram.PERCENTILE_50,
// Histogram.PERCENTILE_90,
// Histogram.PERCENTILE_99,
//
// Timer.DURATION_UNIT
// }
.measurables(COUNT, MEAN_RATE, MAX, MEAN)
// the properties specific to the metrics implementation
// default: no properties
.put("key_1", "value_1_1")
/**
* options:
* - expMovingAverage() == {@link ExpMovingAverageRateImplConfigBuilder#expMovingAverage()},
* - custom impl, e.g. countAndMean() == {@link CountScalingRateConfigBuilder#countScaling()}.
* Custom impls must be registered: registry.extendWith(new CountScalingRateConfigBuilder()).
* default: expMovingAverage()
*/
.impl(expMovingAverage())
// .impl(countScaling().factor(2)) // custom impl
/**
* options:
* - hdr() == {@link HdrHistogramImplConfigBuilder#hdr()},
* - scale() == {@link com.ringcentral.platform.metrics.defaultImpl.histogram.scale.configs.ScaleHistogramImplConfigBuilder#scale()},
* - custom impl, e.g. countAndTotalSum() == {@link CountAndTotalSumScalingHistogramConfigBuilder#countAndTotalSumScaling()}.
* Custom impls must be registered: registry.extendWith(new CountAndTotalSumScalingHistogramConfigBuilder()).
* default: hdr()
*/
.impl(hdr()
.resetByChunks(6, Duration.ofMinutes(2))
.lowestDiscernibleValue(MILLISECONDS.toNanos(1))
.highestTrackableValue(DAYS.toNanos(7), REDUCE_TO_HIGHEST_TRACKABLE)
.significantDigits(2)
.snapshotTtl(30, SECONDS))
// .impl(countAndTotalSumScaling().factor(2)) // custom impl
.allSlice()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: the metric's labels [ SERVICE, SERVER, PORT ]
.labels(SERVICE, SERVER)
// options: noMaxLabeledInstances()
// default: the metric's maxLabeledInstancesPerSlice = 5
.maxLabeledInstances(10)
// options: notExpireLabeledInstances()
// default: the metric's expireLabeledInstanceAfter = 25 SECONDS
.expireLabeledInstanceAfter(42, SECONDS)
// options: noMeasurables()
// default: the metric's measurables { COUNT, MEAN_RATE, MAX, MEAN }
.measurables(COUNT, MEAN_RATE, MAX, MEAN, PERCENTILE_50)
// options: disableTotal(), noTotal(), totalEnabled(boolean)
// default: enabled
.enableTotal()
// options: disableLevels(), noLevels(), levelsEnabled(boolean)
// default: enabled
.enableLevels()
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_1"
.put("key_2", "value_2_1")
.total(timerInstance()
// default: empty name suffix
.name("total")
// options: noMeasurables()
// default: the slice's measurables { COUNT, MEAN_RATE, MAX, MEAN, PERCENTILE_50 }
.measurables(COUNT, MEAN_RATE, MAX, MEAN, PERCENTILE_50, PERCENTILE_90)
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_2"
.put("key_2", "value_2_2")) // overrides "key_2" -> "value_2_1"
.slice("byService")
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no predicate
.predicate(labelValuesMatchingAll(
SERVICE.mask("serv*_1*"),
SERVER.predicate(s -> s.equals("server_1_1"))))
// default: no labels
.labels(SERVICE)
// options: noMaxLabeledInstances()
// default: the metric's maxLabeledInstancesPerSlice = 5
.maxLabeledInstances(2)
// options: notExpireLabeledInstances()
// default: the metric's expireLabeledInstanceAfter = 25 SECONDS
.expireLabeledInstanceAfter(42, SECONDS)
// options: noMeasurables()
// default: the metric's measurables { COUNT, MEAN_RATE, MAX, MEAN }
.measurables(
COUNT,
MEAN_RATE,
MAX,
MEAN,
PERCENTILE_75,
MS_10_BUCKET,
MS_30_BUCKET,
MS_50_BUCKET,
MS_75_BUCKET,
MS_100_BUCKET,
MS_250_BUCKET)
// options: disableTotal(), noTotal(), totalEnabled(boolean)
// default: enabled
.enableTotal()
// options: disableLevels(), noLevels(), levelsEnabled(boolean)
// default: disabled
.enableLevels()
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_1"
.put("key_2", "value_2_1")
.total(timerInstance()
// default: empty name suffix
.name("total")
// options: noMeasurables()
// default: the slice's measurables { COUNT, MEAN_RATE, MAX, MEAN, PERCENTILE_75 }
.measurables(COUNT, MEAN_RATE, MIN, MAX, MEAN, PERCENTILE_75, PERCENTILE_90)
// the properties specific to the metrics implementation
// default: no properties (no overrides)
.put("key_1", "value_1_2") // overrides "key_1" -> "value_1_2"
.put("key_2", "value_2_2")) // overrides "key_2" -> "value_2_1"
);
c.r.p.metrics.var.Var
is an arbitrary (possibly cached) value of a specific type
([Caching]ObjectVar
, [Caching]LongVar
, [Caching]DoubleVar
, [Caching]StringVar
are supported)
that can change over time.
VarSample.java
AtomicLong valueSupplier_1 = new AtomicLong();
// Supported var types: ObjectVar, LongVar, DoubleVar, StringVar
LongVar defaultConfigVar = registry.longVar(
withName("var", "defaultConfig"),
() -> valueSupplier_1.incrementAndGet());
AtomicLong valueSupplier_2 = new AtomicLong();
LongVar fullConfigVar = registry.longVar(
withName("var", "fullConfig"),
// options: Var.noTotal()
() -> valueSupplier_2.incrementAndGet(),
() -> withLongVar()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no prefix label values
.prefix(labelValues(SAMPLE.value("var")))
.labels(SERVICE, SERVER, PORT)
// the properties specific to the metrics implementation
// default: no properties
.put("key", "value"));
AtomicLong valueSupplier_3 = new AtomicLong();
fullConfigVar.register(
() -> valueSupplier_3.incrementAndGet(),
forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
AtomicLong valueSupplier_4 = new AtomicLong();
fullConfigVar.register(
() -> valueSupplier_4.incrementAndGet(),
forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("211")));
fullConfigVar.deregister(labelValues(
SERVICE.value("service_1"),
SERVER.value("server_1_1"),
PORT.value("111")));
AtomicLong valueSupplier_5 = new AtomicLong();
// Supported caching var types:
// CachingObjectVar,
// CachingLongVar,
// CachingDoubleVar,
// CachingStringVar
CachingDoubleVar defaultConfigCachingVar = registry.cachingDoubleVar(
withName("cachingVar", "defaultConfig"),
() -> valueSupplier_5.incrementAndGet() + 0.5);
AtomicLong valueSupplier_6 = new AtomicLong();
CachingDoubleVar fullConfigCachingVar = registry.cachingDoubleVar(
withName("cachingVar", "fullConfig"),
// options: Var.noTotal()
() -> valueSupplier_6.incrementAndGet() + 0.5,
() -> withCachingDoubleVar()
// options: disable(), enabled(boolean)
// default: enabled
.enable()
// default: no prefix label values
.prefix(labelValues(SAMPLE.value("var")))
.labels(SERVICE, SERVER, PORT)
// default: 30 SECONDS
.ttl(10, SECONDS)
// the properties specific to the metrics implementation
// default: no properties
.put("key", "value"));
Typically, metrics are used to provide runtime information about an application instance.
In order to do this, it is necessary not only to collect metrics but also to export them to
external monitoring systems that provide various means of visualizing and analyzing the collected metrics.
For example, Prometheus (https://prometheus.io).
Metrics reporter allows you to present metrics in the format of a specific monitoring system;
some reporters additionally send metrics to an external monitoring system in the appropriate format.
The following describes the reporters provided by the library out of the box.
PrometheusMetricsExporter
exports metrics in the Prometheus format (https://prometheus.io).
Dependencies:
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-prometheus</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
Note that metrics-facade-prometheus
uses
<dependency>
<groupId>io.prometheus</groupId>
<artifactId>simpleclient_common</artifactId>
<version>...</version>
</dependency>
In case of conflict between the simpleclient_common
version used in Metrics Facade
and the one used in your project, you can resolve it with dependency.exclusions
or any other available means. For example, see metrics-facade-samples/pom.xml
:
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-prometheus</artifactId>
<version>${project.version}</version>
<exclusions>
<exclusion>
<groupId>io.prometheus</groupId>
<artifactId>simpleclient_common</artifactId>
</exclusion>
</exclusions>
</dependency>
Example:
MetricRegistry registry = new DefaultMetricRegistry();
PrometheusMetricsExporter exporter = new PrometheusMetricsExporter(registry);
Histogram h = registry.histogram(
withName("histogram"),
() -> withHistogram()
.labels(SERVICE, SERVER, PORT)
.measurables(MAX, MEAN));
h.update(1, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
h.update(2, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_2"), PORT.value("121")));
h.update(3, forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("211")));
// Metric instances are added asynchronously
sleep(25);
System.out.println(exporter.exportMetrics());
Output (simplified):
# TYPE histogram_max gauge
histogram_max{service="service_1",server="server_1_1",port="111",} 1.0
histogram_max{service="service_1",server="server_1_2",port="121",} 2.0
histogram_max{service="service_2",server="server_2_1",port="211",} 3.0
# TYPE histogram_mean gauge
histogram_mean{service="service_1",server="server_1_1",port="111",} 1.0
histogram_mean{service="service_1",server="server_1_2",port="121",} 2.0
histogram_mean{service="service_2",server="server_2_1",port="211",} 3.0
If you want to modify the export (change the names, disable some metrics or measured values, etc.),
you need to configure the PrometheusMetricsExporter
accordingly:
PrometheusMetricsExporterSample.java
MetricRegistry registry = new DefaultMetricRegistry();
// Default config
// PrometheusMetricsExporter prometheusMetricsExporter = new PrometheusMetricsExporter(registry);
PrometheusInstanceSampleSpecProvider miSampleSpecProvider = new PrometheusInstanceSampleSpecProvider(
true, // exportTotalInstances. defaults to true
false, // exportLabeledTotalInstances. defaults to false
false); // exportLevelInstances. defaults to true
PrometheusInstanceSampleSpecModsProvider miSampleSpecModsProvider = new PrometheusInstanceSampleSpecModsProvider();
miSampleSpecModsProvider.addMod(
forMetricInstancesMatching(
nameMask("Histogram.**"),
instance -> "service_2".equals(instance.valueOf(SERVICE))),
(metric, instance, currSpec) -> instanceSampleSpec().disable());
miSampleSpecModsProvider.addMod(
forMetricWithName("Histogram"),
(metric, instance, currSpec) -> instanceSampleSpec()
.name(instance.name().withNewPart(instance.valueOf(SERVICE)))
.labelValues(currSpec.labelValuesWithout(SERVICE)));
miSampleSpecModsProvider.addMod(
forMetricsWithNamePrefix("Histogram"),
(metric, instance, currSpec) ->
instanceSampleSpec().name(currSpec.name().replaceLast(currSpec.name().lastPart() + "_svc")));
PrometheusInstanceSamplesProducer miSamplesProducer = new PrometheusInstanceSamplesProducer(
null, // totalInstanceNameSuffix. defaults to null that means no suffix
"all"); // labeledMetricTotalInstanceNameSuffix. defaults to "all"
PrometheusSampleSpecProvider sampleSpecProvider = new PrometheusSampleSpecProvider();
PrometheusSampleSpecModsProvider sampleSpecModsProvider = new PrometheusSampleSpecModsProvider();
sampleSpecModsProvider.addMod(
forMetricInstancesMatching(
nameMask("Histogram.**"),
instance -> instance instanceof HistogramInstance),
(instanceSampleSpec, instance, measurableValues, measurable, currSpec) ->
measurable instanceof Max ? sampleSpec().disable() : sampleSpec());
PrometheusSamplesProducer samplesProducer = new PrometheusSamplesProducer();
PrometheusInstanceSamplesProvider miSamplesProvider = new PrometheusInstanceSamplesProvider(
miSampleSpecProvider,
miSampleSpecModsProvider,
miSamplesProducer,
sampleSpecProvider,
sampleSpecModsProvider,
samplesProducer,
registry);
PrometheusMetricsExporter exporter = new PrometheusMetricsExporter(
true,
Locale.ENGLISH,
miSamplesProvider);
Histogram h = registry.histogram(
withName("Histogram"),
() -> withHistogram()
.description("Histogram for " + PrometheusMetricsExporterSample.class.getSimpleName())
.labels(SERVICE, SERVER, PORT)
.measurables(MIN, MAX, MEAN));
h.update(1, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
h.update(2, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
h.update(3, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_2"), PORT.value("121")));
h.update(4, forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("211")));
Timer t = registry.timer(
withName("Timer"),
() -> withTimer()
.description("Timer for " + PrometheusMetricsExporterSample.class.getSimpleName())
.labels(SERVICE, SERVER, PORT)
.measurables(MIN, MAX, MEAN));
t.update(SECONDS.toNanos(1), forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
t.update(SECONDS.toNanos(2), forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_2"), PORT.value("121")));
t.update(SECONDS.toNanos(3), forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("211")));
Output:
# HELP histogram_service_1_svc_mean Histogram for PrometheusMetricsExporterSample
# TYPE histogram_service_1_svc_mean gauge
histogram_service_1_svc_mean{server="server_1_1",port="111",} 1.5
histogram_service_1_svc_mean{server="server_1_2",port="121",} 3.0
# HELP histogram_service_1_svc_min Histogram for PrometheusMetricsExporterSample
# TYPE histogram_service_1_svc_min gauge
histogram_service_1_svc_min{server="server_1_1",port="111",} 1.0
histogram_service_1_svc_min{server="server_1_2",port="121",} 3.0
# HELP timer_max Timer for PrometheusMetricsExporterSample
# TYPE timer_max gauge
timer_max{service="service_1",server="server_1_1",port="111",} 1.002438655
timer_max{service="service_1",server="server_1_2",port="121",} 2.004877311
timer_max{service="service_2",server="server_2_1",port="211",} 3.003121663
# HELP timer_mean Timer for PrometheusMetricsExporterSample
# TYPE timer_mean gauge
timer_mean{service="service_1",server="server_1_1",port="111",} 1.000341504
timer_mean{service="service_1",server="server_1_2",port="121",} 2.000683008
timer_mean{service="service_2",server="server_2_1",port="211",} 2.9947330560000003
# HELP timer_min Timer for PrometheusMetricsExporterSample
# TYPE timer_min gauge
timer_min{service="service_1",server="server_1_1",port="111",} 0.998244352
timer_min{service="service_1",server="server_1_2",port="121",} 1.996488704
timer_min{service="service_2",server="server_2_1",port="211",} 2.986344448
ZabbixMetricsJsonExporter
exports metrics in the format that can be adapted for Zabbix.
This is a non-standard format used in a number of RingCentral projects.
ZabbixLldMetricsReporter
exports MBeans that can be used for Zabbix low-level discovery
(https://www.zabbix.com/documentation/current/manual/discovery/low_level_discovery).
Dependencies:
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-base</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
ZabbixMetricsJsonExporter
and ZabbixLldMetricsReporter
are best explained with:
ZabbixReportersSample.java
MetricRegistry registry = new DefaultMetricRegistry();
DefaultInstanceSampleSpecModsProvider miSampleSpecModsProvider = new DefaultInstanceSampleSpecModsProvider();
miSampleSpecModsProvider.addMod(
forMetricInstancesMatching(
nameMask("histogram.**"),
instance -> "service_2".equals(instance.valueOf(SERVICE))),
(metric, instance, currSpec) -> instanceSampleSpec().disable());
miSampleSpecModsProvider.addMod(
forMetricWithName("histogram"),
(metric, instance, currSpec) -> instanceSampleSpec().name(instance.name().withNewPart("test")));
DefaultSampleSpecModsProvider sampleSpecModsProvider = new DefaultSampleSpecModsProvider();
sampleSpecModsProvider.addMod(
forMetricInstancesMatching(
nameMask("histogram.**"),
instance -> instance instanceof HistogramInstance),
(instanceSampleSpec, instance, measurableValues, measurable, currSpec) ->
measurable instanceof Max ? sampleSpec().disable() : sampleSpec());
DefaultInstanceSamplesProvider miSamplesProvider = new DefaultInstanceSamplesProvider(
miSampleSpecModsProvider,
sampleSpecModsProvider,
new DefaultSampleSpecProvider(CustomMeasurableNameProvider.INSTANCE),
registry);
ZabbixMetricsJsonExporter exporter = new ZabbixMetricsJsonExporter(miSamplesProvider);
// LLD
ZGroupMBeansExporter zGroupMBeansExporter = new ZGroupMBeansExporter(
"zabbixReportersSample.zabbix.lld:type=",
DefaultZGroupJsonMapper.INSTANCE,
"JsonData");
zGroupMBeansExporter.ensureGroup("server");
ZabbixLldMetricsReporter lldReporter = new ZabbixLldMetricsReporter(zGroupMBeansExporter);
lldReporter.addRules(
forMetricInstancesMatching(nameMask("histogram.**")),
new Rule(
"service",
List.of(new RuleItem(SERVICE, "service"), new RuleItem(SERVER, "server"))));
lldReporter.addRules(
forMetricInstancesMatching(nameMask("histogram.**")),
new Rule(
"server",
List.of(new RuleItem(i -> i.valueOf(SERVICE) + "/" + i.valueOf(SERVER), "server"))));
registry.addListener(lldReporter);
// Metrics
Histogram h = registry.histogram(
withName("histogram"),
() -> withHistogram()
.labels(SERVICE, SERVER, PORT)
.measurables(COUNT, MAX, MEAN, Buckets.of(scale())));
h.update(1, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
h.update(2, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_2"), PORT.value("121")));
h.update(3, forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("211")));
...
static ScaleBuilder<?> scale() {
return
// 100 ms
first(linear().steps(25, MILLISECONDS, 4))
// 500 ms
.then(linear().steps(100, MILLISECONDS, 4).withInf());
}
exporter.exportMetrics()
as JSON:
{
"delta": [
{
"timer.test.count": 3
},
{
"timer.test.service_1.count": 2
},
{
"timer.test.service_1.server_1_1.111.count": 1
},
{
"timer.test.service_1.server_1_1.count": 1
},
{
"timer.test.service_1.server_1_2.121.count": 1
},
{
"timer.test.service_1.server_1_2.count": 1
}
],
"instant": [
{
"timer.test.duration.0ms_bucket": 0
},
{
"timer.test.duration.100ms_bucket": 3
},
{
"timer.test.duration.200ms_bucket": 3
},
{
"timer.test.duration.25ms_bucket": 3
},
{
"timer.test.duration.300ms_bucket": 3
},
{
"timer.test.duration.400ms_bucket": 3
},
{
"timer.test.duration.500ms_bucket": 3
},
{
"timer.test.duration.50ms_bucket": 3
},
{
"timer.test.duration.75ms_bucket": 3
},
{
"timer.test.duration.inf_bucket": 3
},
{
"timer.test.duration.mean": 2.0E-6
},
{
"timer.test.service_1.duration.0ms_bucket": 0
},
{
"timer.test.service_1.duration.100ms_bucket": 2
},
{
"timer.test.service_1.duration.200ms_bucket": 2
},
{
"timer.test.service_1.duration.25ms_bucket": 2
},
{
"timer.test.service_1.duration.300ms_bucket": 2
},
{
"timer.test.service_1.duration.400ms_bucket": 2
},
{
"timer.test.service_1.duration.500ms_bucket": 2
},
{
"timer.test.service_1.duration.50ms_bucket": 2
},
{
"timer.test.service_1.duration.75ms_bucket": 2
},
{
"timer.test.service_1.duration.inf_bucket": 2
},
{
"timer.test.service_1.duration.mean": 1.5E-6
},
{
"timer.test.service_1.server_1_1.111.duration.0ms_bucket": 0
},
{
"timer.test.service_1.server_1_1.111.duration.100ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.200ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.25ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.300ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.400ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.500ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.50ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.75ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.inf_bucket": 1
},
{
"timer.test.service_1.server_1_1.111.duration.mean": 1.0E-6
},
{
"timer.test.service_1.server_1_1.duration.0ms_bucket": 0
},
{
"timer.test.service_1.server_1_1.duration.100ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.200ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.25ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.300ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.400ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.500ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.50ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.75ms_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.inf_bucket": 1
},
{
"timer.test.service_1.server_1_1.duration.mean": 1.0E-6
},
{
"timer.test.service_1.server_1_2.121.duration.0ms_bucket": 0
},
{
"timer.test.service_1.server_1_2.121.duration.100ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.200ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.25ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.300ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.400ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.500ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.50ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.75ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.inf_bucket": 1
},
{
"timer.test.service_1.server_1_2.121.duration.mean": 2.0E-6
},
{
"timer.test.service_1.server_1_2.duration.0ms_bucket": 0
},
{
"timer.test.service_1.server_1_2.duration.100ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.200ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.25ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.300ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.400ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.500ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.50ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.75ms_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.inf_bucket": 1
},
{
"timer.test.service_1.server_1_2.duration.mean": 2.0E-6
}
]
}
JMX MBean attribute zabbixReportersSample.zabbix.lld:type=service.JsonData
:
{
"data": [
{
"{#SERVICE}": "service_1",
"{#SERVER}": "server_1_1"
},
{
"{#SERVICE}": "service_1",
"{#SERVER}": "server_1_2"
},
{
"{#SERVICE}": "service_2",
"{#SERVER}": "server_2_1"
}
]
}
JMX MBean attribute zabbixReportersSample.zabbix.lld:type=server.JsonData
:
{
"data": [
{
"{#SERVER}": "service_1/server_1_1"
},
{
"{#SERVER}": "service_1/server_1_2"
},
{
"{#SERVER}": "service_2/server_2_1"
}
]
}
TelegrafMetricsJsonExporter
exports metrics in the Telegraf format (https://github.com/influxdata/telegraf).
Dependencies:
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-base</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
TelegrafMetricsJsonExporter
is best explained with:
TelegrafMetricsJsonExporterSample.java
MetricRegistry registry = new DefaultMetricRegistry();
DefaultInstanceSampleSpecModsProvider miSampleSpecModsProvider = new DefaultInstanceSampleSpecModsProvider();
miSampleSpecModsProvider.addMod(
forMetricInstancesMatching(
nameMask("histogram.**"),
instance -> "service_2".equals(instance.valueOf(SERVICE))),
(metric, instance, currSpec) -> instanceSampleSpec().disable());
miSampleSpecModsProvider.addMod(
forMetricWithName("histogram"),
(metric, instance, currSpec) -> instanceSampleSpec().name(instance.name().withNewPart("test")));
DefaultSampleSpecModsProvider sampleSpecModsProvider = new DefaultSampleSpecModsProvider();
sampleSpecModsProvider.addMod(
forMetricInstancesMatching(
nameMask("histogram.**"),
instance -> instance instanceof HistogramInstance),
(instanceSampleSpec, instance, measurableValues, measurable, currSpec) ->
measurable instanceof Max ? sampleSpec().disable() : sampleSpec());
DefaultInstanceSamplesProvider miSamplesProvider = new DefaultInstanceSamplesProvider(
miSampleSpecModsProvider,
sampleSpecModsProvider,
new DefaultSampleSpecProvider(CustomMeasurableNameProvider.INSTANCE),
registry);
// Metrics
Histogram h = registry.histogram(
withName("histogram"),
() -> withHistogram()
.labels(SERVICE, SERVER, PORT)
.measurables(COUNT, MAX, MEAN));
h.update(1, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
h.update(2, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_2"), PORT.value("121")));
h.update(3, forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("211")));
exporter.exportMetrics()
as JSON (without grouping by types):
{
"histogram.test.mean": 2.0,
"histogram.test.count": 3,
"histogram.test.service_1.server_1_1.111.mean": 1.0,
"histogram.test.service_1.server_1_1.111.count": 1,
"histogram.test.service_1.server_1_2.121.mean": 2.0,
"histogram.test.service_1.server_1_2.121.count": 1,
"histogram.test.service_1.mean": 1.5,
"histogram.test.service_1.count": 2,
"histogram.test.service_1.server_1_2.mean": 2.0,
"histogram.test.service_1.server_1_2.count": 1,
"histogram.test.service_1.server_1_1.mean": 1.0,
"histogram.test.service_1.server_1_1.count": 1
}
exporter.exportMetrics()
as JSON (with grouping by types - a non-standard format):
{
"instant": {
"histogram.test.mean": 2.0,
"histogram.test.service_1.server_1_1.111.mean": 1.0,
"histogram.test.service_1.server_1_2.121.mean": 2.0,
"histogram.test.service_1.mean": 1.5,
"histogram.test.service_1.server_1_2.mean": 2.0,
"histogram.test.service_1.server_1_1.mean": 1.0
},
"delta": {
"histogram.test.count": 3,
"histogram.test.service_1.server_1_1.111.count": 1,
"histogram.test.service_1.server_1_2.121.count": 1,
"histogram.test.service_1.count": 2,
"histogram.test.service_1.server_1_2.count": 1,
"histogram.test.service_1.server_1_1.count": 1
}
}
JmxMetricsReporter
exports MBeans for the corresponding metric instances.
Dependencies:
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-base</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
JmxMetricsReporter
is best explained with:
JmxMetricsReporterSample.java
MetricRegistry registry = new DefaultMetricRegistry();
// Default config
// registry.addListener(new JmxMetricsReporter());
MaskTreeMetricNamedInfoProvider<MBeanSpecProvider> mBeanSpecs = new MaskTreeMetricNamedInfoProvider<>();
mBeanSpecs.addInfo(
forMetricInstancesMatching(
nameMask("rate.**"),
instance -> "service_2".equals(instance.valueOf(SERVICE))),
instance -> mBeanSpec().disable());
mBeanSpecs.addInfo(
forMetricsWithNamePrefix("rate"),
instance -> mBeanSpec()
.name(
instance.isTotalInstance() ?
instance.name() :
instance.name().withNewPart(instance.valueOf(SERVICE)))
.labelValues(instance.labelValuesWithout(SERVICE)));
JmxMetricsReporter jmxReporter = new JmxMetricsReporter(
mBeanSpecs,
getPlatformMBeanServer(),
new DefaultObjectNameProvider(),
new CustomMeasurableNameProvider(),
"JmxMetricsReporterSample");
registry.addListener(jmxReporter);
Rate r = registry.rate(
withName("rate"),
() -> withRate()
.labels(SERVICE, SERVER, PORT)
.measurables(COUNT, MEAN_RATE, ONE_MINUTE_RATE));
r.mark(1, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_1"), PORT.value("111")));
r.mark(2, forLabelValues(SERVICE.value("service_1"), SERVER.value("server_1_2"), PORT.value("121")));
r.mark(3, forLabelValues(SERVICE.value("service_2"), SERVER.value("server_2_1"), PORT.value("211")));
JMX MBean attribute JmxMetricsReporterSample:name=rate.service_1,server=server_1_2,port=121.count = 2
Metric producer adds some predefined metrics to a registry.
Metrics producers are represented by subclasses of MetricsProducer
.
MetricsProducersSample.java
MetricRegistry registry = new DefaultMetricRegistry();
// adds some system metrics
new SystemMetricsProducer().produceMetrics(registry);
SystemMetricsProducer
just combines:
RuntimeMetricsProducer
OperatingSystemMetricsProducer
GarbageCollectorsMetricsProducer
MemoryMetricsProducer
ThreadsMetricsProducer
BufferPoolsMetricsProducer
ClassesMetricsProducer
Adds a number of metrics related to the JVM.
See RuntimeMetricsProducer for details.
It is based on java.lang.management.RuntimeMXBean
.
Adds a number of metrics related to operating system:
OS name, OS architecture, CPU time used by the process, etc.
See DefaultOperatingSystemMetricsProducer and LabeledOperatingSystemMetricsProducer for details.
It is based on com.sun.management.OperatingSystemMXBean
.
Adds a number of metrics related to garbage collection:
the total number of collections that have occurred, the approximate accumulated collection elapsed time, etc.
See DefaultGarbageCollectorsMetricsProducer and LabeledGarbageCollectorsMetricsProducer for details.
It is based on java.lang.management.GarbageCollectorMetricSet
.
Adds a number of metrics related to memory:
heap memory usage, non-heap memory usage, etc.
See DefaultMemoryMetricsProducer and LabeledMemoryMetricsProducer for details.
It is based on java.lang.management.MemoryMXBean
.
Adds a number of metrics related to threads:
the current number of live threads, the total number of threads created and also started since the JVM started, etc.
See DefaultThreadsMetricsProducer and LabeledThreadsMetricsProducer for details.
It is based on java.lang.management.ThreadMXBean
Adds a number of metrics related to buffer pools.
See DefaultBufferPoolsMetricsProducer and LabeledBufferPoolsMetricsProducer for details.
It is based on the MBeans java.nio:type=BufferPool,name=<pool_name>
.
Adds a number of metrics related to the class loading system of the JVM.
See ClassesMetricsProducer for details.
It is based on java.lang.management.ClassLoadingMXBean
.
DropwizardMetricRegistryDefaultInstanceSamplesProvider
helps to export metrics from existing com.codahale.metrics.MetricRegistry
using Metrics Reporters (except PrometheusMetricsExporter).
For example,
MetricRegistry registry = new MetricRegistry();
AtomicInteger g1 = new AtomicInteger();
registry.gauge("g1", () -> new Gauge<Integer>() {
@Override
public Integer getValue() {
return g1.incrementAndGet();
}
});
Counter c1 = registry.counter("c1");
c1.inc();
Histogram h1 = registry.histogram("h1");
h1.update(10);
h1.update(100);
h1.update(1000);
Timer t1 = registry.timer("t1");
t1.update(Duration.ofMinutes(10));
Meter m1 = registry.meter("m1");
m1.mark();
m1.mark(10);
DropwizardMetricRegistryDefaultInstanceSamplesProvider provider = new DropwizardMetricRegistryDefaultInstanceSamplesProvider(registry);
TelegrafMetricsJsonExporter telegrafMetricsJsonExporter = new TelegrafMetricsJsonExporter(true, provider);
MetricsJson metrics = telegrafMetricsJsonExporter.exportMetrics();
ObjectMapper mapper = new ObjectMapper();
System.out.println(mapper.writeValueAsString(metrics));
Output:
{"instant":{"g1":1.0,"h1.mean":370.0,"h1.max":1000,"h1.min":10,"h1.median":100.0,"h1.std_dev":446.9899327725402,"h1.75_percentile":1000.0,"h1.95_percentile":1000.0,"h1.98_percentile":1000.0,"h1.99_percentile":1000.0,"h1.999_percentile":1000.0,"t1.mean":600.0,"t1.max":600.0,"t1.min":600.0,"t1.median":600.0,"t1.std_dev":0.0,"t1.75_percentile":600.0,"t1.95_percentile":600.0,"t1.98_percentile":600.0,"t1.99_percentile":600.0,"t1.999_percentile":600.0,"m1.1_minute_rate":0.0,"m1.5_minute_rate":0.0,"m1.15_minute_rate":0.0,"m1.mean_rate":288.9463950588065},"delta":{"c1":1,"h1.count":3,"t1.count":1,"m1.total":11}}
Required dependency:
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-dropwizard</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
DropwizardMetricRegistryPrometheusInstanceSamplesProvider
helps to export metrics from existing com.codahale.metrics.MetricRegistry
using PrometheusMetricsExporter.
For example,
MetricRegistry registry = new MetricRegistry();
AtomicInteger g1 = new AtomicInteger();
registry.gauge("g1", () -> new Gauge<Integer>() {
@Override
public Integer getValue() {
return g1.incrementAndGet();
}
});
Counter c1 = registry.counter("c1");
c1.inc();
Histogram h1 = registry.histogram("h1");
h1.update(10);
h1.update(100);
h1.update(1000);
Timer t1 = registry.timer("t1");
t1.update(Duration.ofMinutes(10));
Meter m1 = registry.meter("m1");
m1.mark();
m1.mark(10);
DropwizardMetricRegistryDefaultInstanceSamplesProvider provider = new DropwizardMetricRegistryDefaultInstanceSamplesProvider(registry);
TelegrafMetricsJsonExporter telegrafMetricsJsonExporter = new TelegrafMetricsJsonExporter(true, provider);
MetricsJson metrics = telegrafMetricsJsonExporter.exportMetrics();
System.out.println(metrics);
Output:
# HELP h1 Generated from Dropwizard metric import (metric=h1, type=com.codahale.metrics.Histogram)
# TYPE h1 summary
h1{quantile="0.5",} 100.0
h1{quantile="0.75",} 1000.0
h1{quantile="0.95",} 1000.0
h1{quantile="0.98",} 1000.0
h1{quantile="0.99",} 1000.0
h1{quantile="0.999",} 1000.0
h1_count 3.0
# HELP g1 Generated from Dropwizard metric import (metric=g1, type=com.ringcentral.platform.metrics.samples.temp.DropwizardMetricRegistryPrometheusInstanceSamplesProviderSample$1)
# TYPE g1 gauge
g1 0.0
# HELP t1 Generated from Dropwizard metric import (metric=t1, type=com.codahale.metrics.Timer)
# TYPE t1 summary
t1{quantile="0.5",} 600.0
t1{quantile="0.75",} 600.0
t1{quantile="0.95",} 600.0
t1{quantile="0.98",} 600.0
t1{quantile="0.99",} 600.0
t1{quantile="0.999",} 600.0
t1_count 1.0
# HELP c1 Generated from Dropwizard metric import (metric=c1, type=com.codahale.metrics.Counter)
# TYPE c1 gauge
c1 1.0
Required dependency:
<dependency>
<groupId>com.ringcentral.platform.metrics</groupId>
<artifactId>metrics-facade-dropwizard-to-prometheus</artifactId>
<version>4.0.0-RELEASE</version>
</dependency>
MIT