Skip to content

Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

License

Notifications You must be signed in to change notification settings

rishikksh20/MLP-Mixer-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLP-Mixer: An all-MLP Architecture for Vision

This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision.

Usage :

import torch
import numpy as np
from mlp-mixer import MLPMixer

img = torch.ones([1, 3, 224, 224])

model = MLPMixer(in_channels=3, image_size=224, patch_size=16, num_classes=1000,
                 dim=512, depth=8, token_dim=256, channel_dim=2048)

parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
print('Trainable Parameters: %.3fM' % parameters)

out_img = model(img)

print("Shape of out :", out_img.shape)  # [B, in_channels, image_size, image_size]

Citation :

@misc{tolstikhin2021mlpmixer,
      title={MLP-Mixer: An all-MLP Architecture for Vision}, 
      author={Ilya Tolstikhin and Neil Houlsby and Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Thomas Unterthiner and Jessica Yung and Daniel Keysers and Jakob Uszkoreit and Mario Lucic and Alexey Dosovitskiy},
      year={2021},
      eprint={2105.01601},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement :

About

Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages