Skip to content
/ libran Public

The LibRan package is a library of various pseudo-random number generators along with their exact probability and cumulative probability density functions.

Notifications You must be signed in to change notification settings

rkowen/libran

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

\image html LRlogo.png \image latex LRlogo.eps "LibRan library"

LibRan pseudo-random number generator library

The LibRan package is a library of various pseudo-random number generators along with their \e exact probability and cumulative probability density functions. The libary contains its own optimized sequential congruential uniform pseudo-random number generator on the interval \f$ x \in [0,1) \f$; along with useful tools such as methods for collecting statistics into \e bins.

Each of the random variate distributions rely on a number of internal attributes to \e customize the distribution. The library is written in an object oriented fashion (in C) such that each object's attributes and random number generator is separate from every other object. There are also \e generic routines for calling the various specialized routines for the given random variate distribution.

Required Library Methods

Each random variate included here has at least three provided methods, and for two numeric precisions - (f = float and d = double). The data or numeric precision is given by the \e enum LR_data_type in libran.h.

Routine Generic Fn Description
LR?_*_RAN LR?_RAN Random variate generator
LR?_*_PDF LR?_PDF Random variate probability distribution function
LR?_*_CDF LR?_CDF Random variate cumulative distribution function

Where \f$ \mbox{PDF}(x) = \frac{d}{dx} \mbox{CDF}(x) \f$, and \f$ \mbox{CDF}(x) \f$ is a \e monotonically non-decreasing function such that \f[ \mbox{CDF}(x_1) \le \mbox{CDF}(x_2) \mbox{ where } x_1 < x_2 \f] and \f[ 0 \le \mbox{CDF}(x) \le 1 \mbox{ for all } x \f]

The \e generic functions are found in LRdf.c.

[For discrete distributions the probability mass function (PMF) is taken here as synonymous with the probability distribtuion function (PDF).]

Random Variate Distributions

There are a number of built-in random variate distributions and the complete list of allowed distribution types is given by the \e enum LR_type in libran.h. They fall into a few types as follows:

Full Infinite Range

These random variate distributions will generate variates where \f$ x \in (-\infty,\infty) \f$. These distributions are defined with attributes \e m and \e s representing the mean or mode and the width of the distribution.

Type Source Distribution Description
unif LRunif.c uniformly on given interval
gausbm LRgaus.c Gaussian or Normal using Box-Muller method
gausmar LRgaus.c Gaussian or Normal using Marsaglia method
cauchy LRcauchy.c Cauchy using inverse method
cauchymar LRcauchy.c Cauchy using Marsaglia method

Semi-Infinite Range

These random variate distributions will generate variates where \f$ x \in (0,\infty) \f$.

Type Source Distribution Description
nexp LRnexp.c negative exponential

Finite Range

These random variate distributions will generate variates on a finite interval \f$ x \in (a,b) \f$.

Type Source Distribution Description
gsn2 LRgsn.c Gaussian-like (sawtooth)
gsn4 LRgsn.c Gaussian-like (simple bell curve)
gsn12 LRgsn.c Gaussian-like (close Gaussian approximation)

User Defined

These distributions have user-defined shapes.

Type Source Distribution Description
lspline LRlspline.c Linear spline PDF on [a,b]
piece LRpiece.c Histogram-like PDF on [a,b]
inverse LRuinvcdf.c User defined CDF

Discrete

These distributions return discrete (integer values) which are distributed according to the probability mass function (PMF), but denoted here as the probability density function (PDF).

Type Source Distribution Description
poisson LRpoisson.c Events in a fixed interval

Example Code {#examplecode}

Here is an example code showing how to use the LR_obj and LR_bin objects and how to set-up the LR_bin tally bins. The expected values rely on calculating the difference of CDFs at the boundaries.

The median is at \f$ x = 3 \f$ with a width of 2. This code can be used \e as-is by just changing the LR_type from \e gausbm to either \e gausmar, \e gsn12, \e cauchy, or \e cauchymar. The code can be simply changed for those random variate distributions with definite endpoints \e a and \e b.

\code /* example LibRan code */

#include <stdio.h> #include <math.h> #include "libran.h"

#define MAXBIN 60

int main() { int nsamples = 50000; // create LR object and binning object LR_obj *o = LR_new(gausbm, LR_double); LR_bin *b = LR_bin_new(MAXBIN + 2); if (!o) { fprintf(stderr, "Error in creating LR object\n"); return 1; } if (!b) { fprintf(stderr, "Error in creating bin object\n"); return 2; } // set attributes if (LR_set_all(o, "ms", 3., 1.) > 0) { LRperror("Sample Code", o->errno); return 3; } // check the object if (LR_check(o)) { LRperror("Sample Code - check", o->errno); return 4; } // set seed LR_lsetseed(o, 19580512L);

// set up bins (use attributes)
double	start	= o->m.d - 3.0*o->s.d,
	finish	= o->m.d + 3.0*o->s.d,
	incr	= 6.0*o->s.d / MAXBIN;
for (int i = 0; i <= MAXBIN; i++) {
	if (LR_bin_set(b, start + i*incr)) {
		LRperror("Sample Code - bin", b->errno);
		return 5;
	}
}
// set up expectation histogram
double	prevcdf = 0.0, thiscdf, ehist[MAXBIN+2];
for (int i = 0; i < MAXBIN+1; i++) {
	if (isnan(thiscdf = LRd_CDF(o, start + i*incr))){
		LRperror("Sample Code - CDF", o->errno);
		return 6;
	}
	ehist[i] = nsamples * (thiscdf - prevcdf);
	prevcdf = thiscdf;
}
// last bin
ehist[MAXBIN+1] = nsamples * (1.0 - prevcdf);

// run samples
double x;
for (int i = 0; i < nsamples; i++) {
	if (isnan(x = LRd_RAN(o))) {
		LRperror("Sample Code - RAN", o->errno);
		return 7;
	}
	if (LR_bin_add(b, x)) {
		LRperror("Sample Code - bin add", b->errno);
		return 8;
	}
}

// output results (have 99 = inf here)
double prevbdr = -99., thisbdr;
printf("\n"

" n > lo - hi : sample , expected\n" "--- ------- -------- ---------- ---------\n"); for (int i = 0; i < MAXBIN+1; i++) { thisbdr = b->bdrs[i]; printf("% 3d>% 6.1f - % 6.1f : % 9ld , % 9.2f\n", i, prevbdr, thisbdr, b->bins[i], ehist[i]); prevbdr = thisbdr; } // last bin printf("% 3d>% 6.1f - % 6.1f : % 9ld , % 9.2f\n", MAXBIN+1, prevbdr, 99., b->bins[MAXBIN+1], ehist[MAXBIN+1]);

// clean up
LR_bin_rm(&b);
LR_rm(&o);

return 0;

} \endcode

The output may look like this:

\code

n > lo - hi : sample , expected


0> -99.0 - 0.0 : 60 , 67.49 1> 0.0 - 0.1 : 21 , 25.80 2> 0.1 - 0.2 : 30 , 34.47 3> 0.2 - 0.3 : 53 , 45.59 4> 0.3 - 0.4 : 62 , 59.71 5> 0.4 - 0.5 : 83 , 77.42 6> 0.5 - 0.6 : 103 , 99.39 7> 0.6 - 0.7 : 132 , 126.33 8> 0.7 - 0.8 : 157 , 158.97 9> 0.8 - 0.9 : 177 , 198.05 10> 0.9 - 1.0 : 226 , 244.29 11> 1.0 - 1.1 : 287 , 298.32 12> 1.1 - 1.2 : 377 , 360.69 13> 1.2 - 1.3 : 411 , 431.76 14> 1.3 - 1.4 : 526 , 511.69 15> 1.4 - 1.5 : 609 , 600.40 16> 1.5 - 1.6 : 676 , 697.47 17> 1.6 - 1.7 : 793 , 802.19 18> 1.7 - 1.8 : 920 , 913.46 19> 1.8 - 1.9 : 1009 , 1029.82 20> 1.9 - 2.0 : 1134 , 1149.46 21> 2.0 - 2.1 : 1225 , 1270.24 22> 2.1 - 2.2 : 1413 , 1389.76 23> 2.2 - 2.3 : 1488 , 1505.41 24> 2.3 - 2.4 : 1553 , 1614.47 25> 2.4 - 2.5 : 1734 , 1714.22 26> 2.5 - 2.6 : 1780 , 1802.04 27> 2.6 - 2.7 : 1817 , 1875.52 28> 2.7 - 2.8 : 1982 , 1932.59 29> 2.8 - 2.9 : 1969 , 1971.59 30> 2.9 - 3.0 : 2023 , 1991.39 31> 3.0 - 3.1 : 2046 , 1991.39 32> 3.1 - 3.2 : 1978 , 1971.59 33> 3.2 - 3.3 : 1898 , 1932.59 34> 3.3 - 3.4 : 1878 , 1875.52 35> 3.4 - 3.5 : 1811 , 1802.04 36> 3.5 - 3.6 : 1687 , 1714.22 37> 3.6 - 3.7 : 1685 , 1614.47 38> 3.7 - 3.8 : 1490 , 1505.41 39> 3.8 - 3.9 : 1390 , 1389.76 40> 3.9 - 4.0 : 1289 , 1270.24 41> 4.0 - 4.1 : 1148 , 1149.46 42> 4.1 - 4.2 : 1006 , 1029.82 43> 4.2 - 4.3 : 931 , 913.46 44> 4.3 - 4.4 : 776 , 802.19 45> 4.4 - 4.5 : 718 , 697.47 46> 4.5 - 4.6 : 644 , 600.40 47> 4.6 - 4.7 : 537 , 511.69 48> 4.7 - 4.8 : 419 , 431.76 49> 4.8 - 4.9 : 365 , 360.69 50> 4.9 - 5.0 : 290 , 298.32 51> 5.0 - 5.1 : 249 , 244.29 52> 5.1 - 5.2 : 215 , 198.05 53> 5.2 - 5.3 : 158 , 158.97 54> 5.3 - 5.4 : 140 , 126.33 55> 5.4 - 5.5 : 109 , 99.39 56> 5.5 - 5.6 : 77 , 77.42 57> 5.6 - 5.7 : 58 , 59.71 58> 5.7 - 5.8 : 49 , 45.59 59> 5.8 - 5.9 : 29 , 34.47 60> 5.9 - 6.0 : 23 , 25.80 61> 6.0 - 99.0 : 77 , 67.49

\endcode

LibRan Source Code

The central \e git repository is at SourceForge and can be read-only cloned with: \code

git clone git://git.code.sf.net/p/libran/code libran-code

\endcode

The SourceForge site is - https://sourceforge.net/projects/libran

The on-line documentation is at http://libran.org/

\include lgpl.md

\include EXPAND.md

About

The LibRan package is a library of various pseudo-random number generators along with their exact probability and cumulative probability density functions.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published