An R single cell RNA-seq analysis pipeline/suite. It focuses on the following utilities:
- creating super cells from single cell data to fix drop out and noise of scRNA-seq
- Annotating single cell data according bulk RNA-seq
- Comparing temporal scRNA-seq data of different lineage/time-line, identify the key genes
Example jupyter notebooks / markdown files: https://github.com/Arthurhe/Lightbulb/tree/master/Examples
Example data: https://www.dropbox.com/sh/ym6iuxwd129ryeo/AABdaxxkoEJ-K6V86KaebJvka?dl=0
part name | description | progress | to-dos |
---|---|---|---|
Basics | basic data processing functions | partially documented | documentation |
BulkAnnotation | Annotate sc data with bulk data | V0.2 documented | currently doesn't utilize the full information of bulk replicates |
LineageCompare | identify gene expression pattern | undocumented | documentation |
PlotSuite | Plotting functions for Seurat object | undocumented | documentation |
if (!require("devtools")) install.packages("devtools")
devtools::install_github("Arthurhe/Lightbulb")
Depends:
R (>= 3.4.4),
data.table (>= 1.12.0),
Matrix (>= 1.2-14),
Seurat (2.3.4), #currently the code is not compatible with Seurat V3+ because of data structure
Imports:
matrixStats (>= 0.54.0),
gplots (>= 3.0.1.1),
mixtools (>= 1.1.0),
fastcluster (>= 1.1.25),
RANN (>= 2.6.1),
igraph (>= 1.2.4),
GenomicRanges (>= 1.26.4),
WGCNA (>= 1.66),
rsvd (>= 1.0.0)