-
Notifications
You must be signed in to change notification settings - Fork 0
/
lambda_sigma_lift.v
324 lines (285 loc) · 10.4 KB
/
lambda_sigma_lift.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
(* Contribution to the Coq Library V6.3 (July 1999) *)
(****************************************************************************)
(* The Calculus of Inductive Constructions *)
(* *)
(* Projet Coq *)
(* *)
(* INRIA ENS-CNRS *)
(* Rocquencourt Lyon *)
(* *)
(* Coq V5.10 *)
(* Nov 25th 1994 *)
(* *)
(****************************************************************************)
(* lambda_sigma_lift.v *)
(****************************************************************************)
(*****************************************************************************)
(* Projet Coq - Calculus of Inductive Constructions V5.8 *)
(*****************************************************************************)
(* *)
(* Meta-theory of the explicit substitution calculus lambda-env *)
(* Amokrane Saibi *)
(* *)
(* September 1993 *)
(* *)
(*****************************************************************************)
(* theorie lambda-sigma-lift-calcul *)
Require Import TS.
Require Import sur_les_relations.
Require Import sigma_lift.
(* regle beta *)
Inductive reg_beta : terms -> terms -> Prop :=
reg1_beta :
forall a b : terms, reg_beta (app (lambda a) b) (env a (cons b id)).
Hint Resolve reg1_beta.
(* systeme lambda-sigma-lift *)
Inductive e_systemLSL : forall b : wsort, TS b -> TS b -> Prop :=
| beta1 : forall M N : terms, reg_beta M N -> e_systemLSL wt M N
| SL1 :
forall (b : wsort) (M N : TS b), e_systemSL _ M N -> e_systemLSL b M N.
Hint Resolve beta1 SL1.
Notation systemLSL := (e_systemLSL _) (only parsing).
(* <Warning> : Syntax is discontinued *)
(* relation engendree par le systeme lambda-sigma-lift *)
Inductive e_relLSL : forall b : wsort, TS b -> TS b -> Prop :=
| LSL_one_regle :
forall (b : wsort) (M N : TS b), e_systemLSL _ M N -> e_relLSL b M N
| LSL_context_app_l :
forall a a' b : terms,
e_relLSL wt a a' -> e_relLSL wt (app a b) (app a' b)
| LSL_context_app_r :
forall a b b' : terms,
e_relLSL wt b b' -> e_relLSL wt (app a b) (app a b')
| LSL_context_lambda :
forall a a' : terms,
e_relLSL wt a a' -> e_relLSL wt (lambda a) (lambda a')
| LSL_context_env_t :
forall (a a' : terms) (s : sub_explicits),
e_relLSL wt a a' -> e_relLSL wt (env a s) (env a' s)
| LSL_context_env_s :
forall (a : terms) (s s' : sub_explicits),
e_relLSL ws s s' -> e_relLSL wt (env a s) (env a s')
| LSL_context_cons_t :
forall (a a' : terms) (s : sub_explicits),
e_relLSL wt a a' -> e_relLSL ws (cons a s) (cons a' s)
| LSL_context_cons_s :
forall (a : terms) (s s' : sub_explicits),
e_relLSL ws s s' -> e_relLSL ws (cons a s) (cons a s')
| LSL_context_comp_l :
forall s s' t : sub_explicits,
e_relLSL ws s s' -> e_relLSL ws (comp s t) (comp s' t)
| LSL_context_comp_r :
forall s t t' : sub_explicits,
e_relLSL ws t t' -> e_relLSL ws (comp s t) (comp s t')
| LSL_context_lift :
forall s s' : sub_explicits,
e_relLSL ws s s' -> e_relLSL ws (lift s) (lift s').
Notation relLSL := (e_relLSL _) (only parsing).
(* <Warning> : Syntax is discontinued *)
Hint Resolve LSL_one_regle LSL_context_app_l LSL_context_app_r
LSL_context_lambda LSL_context_env_t LSL_context_env_s LSL_context_cons_t
LSL_context_cons_s LSL_context_comp_l LSL_context_comp_r LSL_context_lift.
(* fermeture reflexive-transitive de la relation lambda-sigma-lift *)
Definition e_relLSLstar (b : wsort) := explicit_star _ (e_relLSL b).
Notation relLSLstar := (e_relLSLstar _) (only parsing).
(* <Warning> : Syntax is discontinued *)
Hint Unfold e_relLSLstar.
(* un exemple *)
Goal
e_relLSLstar _
(lambda (app (lambda (app (var 0) (var 0))) (lambda (app (var 0) (var 1)))))
(lambda (app (var 0) (var 0))).
red in |- *;
apply
star_trans1
with
(lambda
(env (app (var 0) (var 0)) (cons (lambda (app (var 0) (var 1))) id))).
auto.
apply
star_trans1
with
(lambda
(app (env (var 0) (cons (lambda (app (var 0) (var 1))) id))
(env (var 0) (cons (lambda (app (var 0) (var 1))) id)))).
auto.
apply
star_trans1
with
(lambda
(app (lambda (app (var 0) (var 1)))
(env (var 0) (cons (lambda (app (var 0) (var 1))) id)))).
auto 6.
apply
star_trans1
with
(lambda
(app (lambda (app (var 0) (var 1))) (lambda (app (var 0) (var 1))))).
auto 6.
apply
star_trans1
with
(lambda
(env (app (var 0) (var 1)) (cons (lambda (app (var 0) (var 1))) id))).
auto.
apply
star_trans1
with
(lambda
(app (env (var 0) (cons (lambda (app (var 0) (var 1))) id))
(env (var 1) (cons (lambda (app (var 0) (var 1))) id)))).
auto.
apply
star_trans1
with
(lambda
(app (lambda (app (var 0) (var 1)))
(env (var 1) (cons (lambda (app (var 0) (var 1))) id)))).
auto 6.
apply
star_trans1
with (lambda (app (lambda (app (var 0) (var 1))) (env (var 0) id))).
auto 6.
apply
star_trans1
with (lambda (env (app (var 0) (var 1)) (cons (env (var 0) id) id))).
auto.
apply
star_trans1
with
(lambda
(app (env (var 0) (cons (env (var 0) id) id))
(env (var 1) (cons (env (var 0) id) id)))).
auto 6.
apply
star_trans1
with
(lambda (app (env (var 0) id) (env (var 1) (cons (env (var 0) id) id)))).
auto 6.
apply star_trans1 with (lambda (app (env (var 0) id) (env (var 0) id))).
auto 6.
apply star_trans1 with (lambda (app (var 0) (env (var 0) id))).
auto 6.
apply star_trans1 with (lambda (app (var 0) (var 0))); auto 6.
Save exemple.
(* *)
Goal
forall a a' b : terms,
e_relLSLstar _ a a' -> e_relLSLstar _ (app a b) (app a' b).
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (app y b); auto.
Save LSLstar_context_app_l.
Hint Resolve LSLstar_context_app_l.
Goal
forall a b b' : terms,
e_relLSLstar _ b b' -> e_relLSLstar _ (app a b) (app a b').
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (app a y); auto.
Save LSLstar_context_app_r.
Hint Resolve LSLstar_context_app_r.
Goal
forall a a' b b' : terms,
e_relLSLstar _ a a' ->
e_relLSLstar _ b b' -> e_relLSLstar _ (app a b) (app a' b').
intros; red in |- *.
apply star_trans with (app a' b).
change (e_relLSLstar _ (app a b) (app a' b)) in |- *; auto.
change (e_relLSLstar _ (app a' b) (app a' b')) in |- *; auto.
Save LSLstar_context_app.
Hint Resolve LSLstar_context_app.
Goal
forall a a' : terms,
e_relLSLstar _ a a' -> e_relLSLstar _ (lambda a) (lambda a').
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (lambda y); auto.
Save LSLstar_context_lambda.
Hint Resolve LSLstar_context_lambda.
Goal
forall (a a' : terms) (s : sub_explicits),
e_relLSLstar _ a a' -> e_relLSLstar _ (env a s) (env a' s).
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (env y s); auto.
Save LSLstar_context_env_t.
Hint Resolve LSLstar_context_env_t.
Goal
forall (a : terms) (s s' : sub_explicits),
e_relLSLstar _ s s' -> e_relLSLstar _ (env a s) (env a s').
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (env a y); auto.
Save LSLstar_context_env_s.
Hint Resolve LSLstar_context_env_s.
Goal
forall (a a' : terms) (s s' : sub_explicits),
e_relLSLstar _ a a' ->
e_relLSLstar _ s s' -> e_relLSLstar _ (env a s) (env a' s').
intros; red in |- *.
apply star_trans with (env a' s).
change (e_relLSLstar _ (env a s) (env a' s)) in |- *; auto.
change (e_relLSLstar _ (env a' s) (env a' s')) in |- *; auto.
Save LSLstar_context_env.
Hint Resolve LSLstar_context_env.
Goal
forall (a a' : terms) (s : sub_explicits),
e_relLSLstar _ a a' -> e_relLSLstar _ (cons a s) (cons a' s).
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (cons y s); auto.
Save LSLstar_context_cons_t.
Hint Resolve LSLstar_context_cons_t.
Goal
forall (a : terms) (s s' : sub_explicits),
e_relLSLstar _ s s' -> e_relLSLstar _ (cons a s) (cons a s').
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (cons a y); auto.
Save LSLstar_context_cons_s.
Hint Resolve LSLstar_context_cons_s.
Goal
forall (a a' : terms) (s s' : sub_explicits),
e_relLSLstar _ a a' ->
e_relLSLstar _ s s' -> e_relLSLstar _ (cons a s) (cons a' s').
intros; red in |- *.
apply star_trans with (cons a' s).
change (e_relLSLstar _ (cons a s) (cons a' s)) in |- *; auto.
change (e_relLSLstar _ (cons a' s) (cons a' s')) in |- *; auto.
Save LSLstar_context_cons.
Hint Resolve LSLstar_context_cons.
Goal
forall s s' t : sub_explicits,
e_relLSLstar _ s s' -> e_relLSLstar _ (comp s t) (comp s' t).
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (comp y t); auto.
Save LSLstar_context_comp_l.
Hint Resolve LSLstar_context_comp_l.
Goal
forall s t t' : sub_explicits,
e_relLSLstar _ t t' -> e_relLSLstar _ (comp s t) (comp s t').
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (comp s y); auto.
Save LSLstar_context_comp_r.
Hint Resolve LSLstar_context_comp_r.
Goal
forall s s' t t' : sub_explicits,
e_relLSLstar _ t t' ->
e_relLSLstar _ s s' -> e_relLSLstar _ (comp s t) (comp s' t').
intros; red in |- *.
apply star_trans with (comp s' t).
change (e_relLSLstar _ (comp s t) (comp s' t)) in |- *; auto.
change (e_relLSLstar _ (comp s' t) (comp s' t')) in |- *; auto.
Save LSLstar_context_comp.
Hint Resolve LSLstar_context_comp.
Goal
forall s s' : sub_explicits,
e_relLSLstar _ s s' -> e_relLSLstar _ (lift s) (lift s').
red in |- *; simple induction 1; intros.
auto.
apply star_trans1 with (lift y); auto.
Save LSLstar_context_lift.
Hint Resolve LSLstar_context_lift.