Skip to content

Commit

Permalink
NeMo MCore llama2 support + MCore PEFT adapters (NVIDIA#7299)
Browse files Browse the repository at this point in the history
* start adding gpt from megatron core path

Signed-off-by: ericharper <complex451@gmail.com>

* set model parallel config

Signed-off-by: ericharper <complex451@gmail.com>

* use model parallel config object

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* set vp size to none if it is 1

Signed-off-by: ericharper <complex451@gmail.com>

* set vp size to none if it is 1

Signed-off-by: ericharper <complex451@gmail.com>

* add TransformerConfig

Signed-off-by: ericharper <complex451@gmail.com>

* start updating to TransformerConfig

Signed-off-by: ericharper <complex451@gmail.com>

* add todo

Signed-off-by: ericharper <complex451@gmail.com>

* revert to model parallel config

Signed-off-by: ericharper <complex451@gmail.com>

* add hidden_size to model_parallel_config

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove imports

Signed-off-by: ericharper <complex451@gmail.com>

* revert

Signed-off-by: ericharper <complex451@gmail.com>

* remove import

Signed-off-by: ericharper <complex451@gmail.com>

* small clean up

Signed-off-by: ericharper <complex451@gmail.com>

* update hidden size in peft base model, add mcore commit to jenkins

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update module args

Signed-off-by: ericharper <complex451@gmail.com>

* add config obj to flash attention tests

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove args

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove sequence parallel arg

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* add config to self

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* add config to test

Signed-off-by: ericharper <complex451@gmail.com>

* get hidden_size from config

Signed-off-by: ericharper <complex451@gmail.com>

* add try except

Signed-off-by: ericharper <complex451@gmail.com>

* use default

Signed-off-by: ericharper <complex451@gmail.com>

* update config with hidden size

Signed-off-by: ericharper <complex451@gmail.com>

* remove arg

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* comment out jenkins test

Signed-off-by: ericharper <complex451@gmail.com>

* revert import

Signed-off-by: ericharper <complex451@gmail.com>

* build transformer config

Signed-off-by: ericharper <complex451@gmail.com>

* add model to provider func

Signed-off-by: ericharper <complex451@gmail.com>

* update forward and float16 wrapper

Signed-off-by: ericharper <complex451@gmail.com>

* instantiate model parallel config after init model parallel

Signed-off-by: ericharper <complex451@gmail.com>

* set virtual rank

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add GQA config to megatron gpt model (NVIDIA#7096)

* Add GQA config in gpt config file

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* Verify mcore is enabled when using GQA

Signed-off-by: jasonwan <jasonwan@nvidia.com>

---------

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* revert

Signed-off-by: ericharper <complex451@gmail.com>

* mcore llama2 ckpt conversion & small fix

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* Add inference & sft config by Hongbin

Co-authored-by: Hongbin Liu <hongbinl@nvidia.com>

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* fix config

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* add inference param. update TP/PP script to support mcore gpt

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* p-tuning

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* modify ckpt conversion script (adding model cast)

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* ckpt conversion use relative path for config

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* start adding gpt from megatron core path

Signed-off-by: ericharper <complex451@gmail.com>

* set model parallel config

Signed-off-by: ericharper <complex451@gmail.com>

* use model parallel config object

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* set vp size to none if it is 1

Signed-off-by: ericharper <complex451@gmail.com>

* set vp size to none if it is 1

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add TransformerConfig

Signed-off-by: ericharper <complex451@gmail.com>

* start updating to TransformerConfig

Signed-off-by: ericharper <complex451@gmail.com>

* add todo

Signed-off-by: ericharper <complex451@gmail.com>

* revert to model parallel config

Signed-off-by: ericharper <complex451@gmail.com>

* add hidden_size to model_parallel_config

Signed-off-by: ericharper <complex451@gmail.com>

* remove imports

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove import

Signed-off-by: ericharper <complex451@gmail.com>

* small clean up

Signed-off-by: ericharper <complex451@gmail.com>

* update hidden size in peft base model, add mcore commit to jenkins

Signed-off-by: ericharper <complex451@gmail.com>

* update module args

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* add config obj to flash attention tests

Signed-off-by: ericharper <complex451@gmail.com>

* remove args

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove sequence parallel arg

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* add config to self

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* add config to test

Signed-off-by: ericharper <complex451@gmail.com>

* get hidden_size from config

Signed-off-by: ericharper <complex451@gmail.com>

* add try except

Signed-off-by: ericharper <complex451@gmail.com>

* use default

Signed-off-by: ericharper <complex451@gmail.com>

* update config with hidden size

Signed-off-by: ericharper <complex451@gmail.com>

* remove arg

Signed-off-by: ericharper <complex451@gmail.com>

* comment out jenkins test

Signed-off-by: ericharper <complex451@gmail.com>

* revert import

Signed-off-by: ericharper <complex451@gmail.com>

* remove optimizer_idx

Signed-off-by: eharper <eharper@nvidia.com>

* prefetch num microbatches

Signed-off-by: eharper <eharper@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* start adding gpt from megatron core path

Signed-off-by: ericharper <complex451@gmail.com>

* set model parallel config

Signed-off-by: ericharper <complex451@gmail.com>

* use model parallel config object

Signed-off-by: ericharper <complex451@gmail.com>

* update args

Signed-off-by: ericharper <complex451@gmail.com>

* fix for p-tuning sequence parallel

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support SFT/distOpt mcore (NVIDIA#7207)

* add inference param. update TP/PP script to support mcore gpt

* p-tuning

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* change layer names for SFT

Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>

* fix bug in SFT

Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>

---------

Signed-off-by: jasonwan <jasonwan@nvidia.com>
Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>
Co-authored-by: Hongbin Liu <hongbinl@nvidia.com>
Co-authored-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* start updating to TransformerConfig

Signed-off-by: ericharper <complex451@gmail.com>

* revert to model parallel config

Signed-off-by: ericharper <complex451@gmail.com>

* add hidden_size to model_parallel_config

Signed-off-by: ericharper <complex451@gmail.com>

* remove imports

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update module args

Signed-off-by: ericharper <complex451@gmail.com>

* add config to self

Signed-off-by: ericharper <complex451@gmail.com>

* build transformer config

Signed-off-by: ericharper <complex451@gmail.com>

* add model to provider func

Signed-off-by: ericharper <complex451@gmail.com>

* update forward and float16 wrapper

Signed-off-by: ericharper <complex451@gmail.com>

* instantiate model parallel config after init model parallel

Signed-off-by: ericharper <complex451@gmail.com>

* set virtual rank

Signed-off-by: ericharper <complex451@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add GQA config to megatron gpt model (NVIDIA#7096)

* Add GQA config in gpt config file

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* Verify mcore is enabled when using GQA

Signed-off-by: jasonwan <jasonwan@nvidia.com>

---------

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* revert

Signed-off-by: ericharper <complex451@gmail.com>

* remove import

Signed-off-by: eharper <eharper@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* rollback model cast for p-tuning

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* update for dist adam

Signed-off-by: eharper <eharper@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use get_gpt_module_list

Signed-off-by: eharper <eharper@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update ckpt conversion script

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* ptl2.0 patch for llama config

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* add plugins to trainer in scripts

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* fix activation checkpointing mcore

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* fix variable names

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* overwrite normalization type for mcore/te

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* Update megatron_llama_sft.yaml

Signed-off-by: Jason Wang <jasonwan@nvidia.com>

* add PEFT adapter support for mcore gpt path (NVIDIA#7276)

* implementation for mcore adapter/mxins

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* small fix for lora and ptuning

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support layerwise peft

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support multiple target layers

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support lora GQA

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support amp O2

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* revert & more O2 fix

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* lora inject to attention

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support lora weight tying

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* add copyright header

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* rollback ptuning name change. full string match mcore target

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* remove comment

Signed-off-by: jasonwan <jasonwan@nvidia.com>

---------

Signed-off-by: jasonwan <jasonwan@nvidia.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* clean up config

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* Sync llama branch (NVIDIA#7297)

* add inference param. update TP/PP script to support mcore gpt

* p-tuning

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* change layer names for SFT

Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>

* fix bug in SFT

Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>

* fix bug: cpu initialization is not really enabled

Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>

* add use_cpu_initialization to TransformerConfig

Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>

* fix bug: wrong config path when using relative cjpt path

Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>

* revert mcore config change

Signed-off-by: Jason Wang <jasonwan@nvidia.com>

---------

Signed-off-by: jasonwan <jasonwan@nvidia.com>
Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>
Signed-off-by: Jason Wang <jasonwan@nvidia.com>
Co-authored-by: Hongbin Liu <hongbinl@nvidia.com>

* clean up ckpt conversion script

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* rollback git merge errors

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* update mcore, add check for mcore+te

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* formatting

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* make sft test dataset optional. fix indentation in config

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* one more fix for optional test set

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support merging lora weights in mcore

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* update mcore for cpu init

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update ckpt conversion for code llama

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add seq_len_interpolation_factor support for long-context llama ckpts (NVIDIA#7312)

* add inference param. update TP/PP script to support mcore gpt

* p-tuning

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* add seq_len_interpolation_factor

Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>

---------

Signed-off-by: jasonwan <jasonwan@nvidia.com>
Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>
Co-authored-by: jasonwan <jasonwan@nvidia.com>
Co-authored-by: Hongbin Liu <hongbinl@nvidia.com>

* fix old ptuning model, update mcore to support seq_len_interpolation_factor

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support fused layernorm linear, fix ptuning O2

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* drop loss mask for mcore for now

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* disable dist ckpt in peft

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix loading non dist ckpt

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* add ckpt conversion to CI

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* update CI

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* mcore_mixin docstring

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* minor change in mcore peft error message

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* fix amp o2 in lora weight tying

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* correct mcore fp8 config

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* add TE installation

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* support mcore adapter tuning

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* comment out new CI test. rollback docker image

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* ignore FA tests, try new CI on 23.08

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* mark new CI as L2, put to beginning to test

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* minor fix for prompt learning

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* rollback to 23.06. comment out CI

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* minor fix ckpt conversion script

Signed-off-by: jasonwan <jasonwan@nvidia.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* minor rollback gpt model change

Signed-off-by: jasonwan <jasonwan@nvidia.com>

---------

Signed-off-by: ericharper <complex451@gmail.com>
Signed-off-by: jasonwan <jasonwan@nvidia.com>
Signed-off-by: eharper <eharper@nvidia.com>
Signed-off-by: Hongbin Liu <hongbinl@nvidia.com>
Signed-off-by: Jason Wang <jasonwan@nvidia.com>
Co-authored-by: ericharper <complex451@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: eharper <eharper@nvidia.com>
Co-authored-by: Hongbin Liu <hongbinl@nvidia.com>
Co-authored-by: Kelvin Liu <lhb8125@users.noreply.github.com>
  • Loading branch information
6 people authored Aug 31, 2023
1 parent ce0da17 commit 35b4e7e
Show file tree
Hide file tree
Showing 18 changed files with 1,153 additions and 97 deletions.
2 changes: 1 addition & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ RUN git clone https://github.com/NVIDIA/apex.git && \
# install megatron core, this can be removed once 0.3 pip package is released
RUN git clone https://github.com/NVIDIA/Megatron-LM.git && \
cd Megatron-LM && \
git checkout 84f64880b3651c4f7cf90da337ee4e7d9968acab && \
git checkout 99b044bff07f8e5d48b45223ed4bb11bd4e884e6 && \
pip install -e .

# uninstall stuff from base container
Expand Down
24 changes: 22 additions & 2 deletions Jenkinsfile
Original file line number Diff line number Diff line change
Expand Up @@ -59,10 +59,10 @@ pipeline {

stage('Megatron Core installation') {
steps {
// commit has api fix for TE
// pinned MCore https://github.com/NVIDIA/Megatron-LM/commit/99b044bff07f8e5d48b45223ed4bb11bd4e884e6
sh 'git clone https://github.com/NVIDIA/Megatron-LM.git && \
cd Megatron-LM && \
git checkout 84f64880b3651c4f7cf90da337ee4e7d9968acab && \
git checkout 99b044bff07f8e5d48b45223ed4bb11bd4e884e6 && \
pip install -e .'
}
}
Expand Down Expand Up @@ -112,6 +112,26 @@ pipeline {
}
}

// TODO: this requires TE >= v0.11 which is not available in 23.06.
// please uncomment this test once mcore CI is ready.
// stage('L2: Community LLM Checkpoints tests') {
// when {
// anyOf {
// branch 'main'
// changeRequest target: 'main'
// }
// }
// failFast true
// steps {
// sh 'CUDA_VISIBLE_DEVICES=0 python scripts/nlp_language_modeling/convert_hf_llama_to_nemo.py \
// --in-file=/home/TestData/nlp/megatron_llama/llama-ci-hf \
// --out-file=/home/TestData/nlp/megatron_llama/ci.nemo \
// --fast-swiglu \
// --precision=16'
// sh 'rm -f /home/TestData/nlp/megatron_llama/ci.nemo'
// }
// }

stage('L2: ASR dev run') {
when {
anyOf {
Expand Down
219 changes: 219 additions & 0 deletions examples/nlp/language_modeling/conf/megatron_llama_config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,219 @@
name: megatron_llama
restore_from_path: null # used when starting from a .nemo file

trainer:
devices: 1
num_nodes: 1
accelerator: gpu
precision: 32
logger: False # logger provided by exp_manager
enable_checkpointing: False
use_distributed_sampler: False
max_epochs: -1 # PTL default. In practice, max_steps will be reached first.
max_steps: 100000 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches
log_every_n_steps: 10
val_check_interval: 100
limit_val_batches: 50
limit_test_batches: 500
accumulate_grad_batches: 1 # do not modify, grad acc is automatic for training megatron models
gradient_clip_val: 1.0
benchmark: False
enable_model_summary: False # default PTL callback for this does not support model parallelism, instead we log manually

exp_manager:
explicit_log_dir: null
exp_dir: null
name: megatron_llama
create_wandb_logger: False
wandb_logger_kwargs:
project: null
name: null
resume_if_exists: True
resume_ignore_no_checkpoint: True
create_checkpoint_callback: True
checkpoint_callback_params:
monitor: val_loss
save_top_k: 10
mode: min
always_save_nemo: False # saves nemo file during validation, not implemented for model parallel
save_nemo_on_train_end: False # not recommended when training large models on clusters with short time limits
filename: 'megatron_gpt--{val_loss:.2f}-{step}-{consumed_samples}'
model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}}

model:
mcore_gpt: True
# specify micro_batch_size, global_batch_size, and model parallelism
# gradient accumulation will be done automatically based on data_parallel_size
micro_batch_size: 4 # limited by GPU memory
global_batch_size: 8 # will use more micro batches to reach global batch size
tensor_model_parallel_size: 1 # intra-layer model parallelism
pipeline_model_parallel_size: 1 # inter-layer model parallelism
virtual_pipeline_model_parallel_size: null # interleaved pipeline

# model architecture
encoder_seq_length: 4096
max_position_embeddings: ${.encoder_seq_length}
num_layers: 32 # 7b: 32 | 13b: 40 | 70b: 80
hidden_size: 4096 # 7b: 4096 | 13b: 5120 | 70b: 8192
ffn_hidden_size: 11008 # Transformer FFN hidden size. Usually 4 * hidden_size. | 7b: 11008 | 13b: 13824 | 70b: 28672
num_attention_heads: 32 # 7b: 32 | 13b: 40 | 70b: 64
init_method_std: 0.02 # Standard deviation of the zero mean normal distribution used for weight initialization.')
use_scaled_init_method: True # use scaled residuals initialization
hidden_dropout: 0.0 # Dropout probability for hidden state transformer.
attention_dropout: 0.0 # Dropout probability for attention
ffn_dropout: 0.0 # Dropout probability in the feed-forward layer.
kv_channels: null # Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if null
apply_query_key_layer_scaling: True # scale Q * K^T by 1 / layer-number.
normalization: 'rmsnorm' # Normalization layer to use. Options are 'layernorm', 'rmsnorm'
layernorm_epsilon: 1e-5
do_layer_norm_weight_decay: False # True means weight decay on all params
make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency.
pre_process: True # add embedding
post_process: True # add pooler
persist_layer_norm: True # Use of persistent fused layer norm kernel.
bias: False # Whether to use bias terms in all weight matrices.
activation: 'fast-swiglu' # Options ['gelu', 'geglu', 'swiglu', 'reglu', 'squared-relu', 'fast-geglu', 'fast-swiglu', 'fast-reglu']
headscale: False # Whether to learn extra parameters that scale the output of the each self-attention head.
transformer_block_type: 'pre_ln' # Options ['pre_ln', 'post_ln', 'normformer']
openai_gelu: False # Use OpenAI's GELU instead of the default GeLU
normalize_attention_scores: True # Whether to scale the output Q * K^T by 1 / sqrt(hidden_size_per_head). This arg is provided as a configuration option mostly for compatibility with models that have been weight-converted from HF. You almost always want to se this to True.
position_embedding_type: 'rope' # Position embedding type. Options ['learned_absolute', 'rope']
rotary_percentage: 1.0 # If using position_embedding_type=rope, then the per head dim is multiplied by this.
attention_type: 'multihead' # Attention type. Options ['multihead']
share_embeddings_and_output_weights: False # Share embedding and output layer weights.
overlap_p2p_comm: False # Overlap p2p communication with computes. This argument is valid only when `virtual_pipeline_model_parallel_size` is larger than 1
batch_p2p_comm: True # Batch consecutive inter-peer send/recv operations. This argument is valid only when `virtual_pipeline_model_parallel_size` is larger than 1
num_query_groups: 32 # Number of query groups for group query attention. If None, normal attention is used. | 7b: 32 | 13b: 40 | 70b: 8

tokenizer:
library: 'sentencepiece'
type: null
model: ??? # /path/to/tokenizer.model
vocab_file: null
merge_file: null
delimiter: null # only used for tabular tokenizer
sentencepiece_legacy: False # Legacy=True allows you to add special tokens to sentencepiece tokenizers.

# Mixed precision
native_amp_init_scale: 4294967296 # 2 ** 32
native_amp_growth_interval: 1000
hysteresis: 2 # Gradient scale hysteresis
fp32_residual_connection: False # Move residual connections to fp32
fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16

# Megatron O2-style half-precision
megatron_amp_O2: False # Enable O2-level automatic mixed precision using main parameters
grad_allreduce_chunk_size_mb: 125

# Fusion
grad_div_ar_fusion: True # Fuse grad division into torch.distributed.all_reduce. Only used with O2 and no pipeline parallelism..
gradient_accumulation_fusion: False # Fuse weight gradient accumulation to GEMMs. Only used with pipeline parallelism and O2.
bias_activation_fusion: False # Use a kernel that fuses the bias addition from weight matrices with the subsequent activation function.
bias_dropout_add_fusion: False # Use a kernel that fuses the bias addition, dropout and residual connection addition.
masked_softmax_fusion: True # Use a kernel that fuses the attention softmax with it's mask.
get_attention_mask_from_fusion: True # When using fused softmax it will create the attention mask so we won't copy it to the pipeline stages.


# Miscellaneous
seed: 1234
resume_from_checkpoint: null # manually set the checkpoint file to load from
use_cpu_initialization: False # Init weights on the CPU (slow for large models)
onnx_safe: False # Use work-arounds for known problems with Torch ONNX exporter.
apex_transformer_log_level: 30 # Python logging level displays logs with severity greater than or equal to this
gradient_as_bucket_view: True # PyTorch DDP argument. Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
sync_batch_comm: False # Enable stream synchronization after each p2p communication between pipeline stages

## Activation Checkpointing
# NeMo Megatron supports 'selective' activation checkpointing where only the memory intensive part of attention is checkpointed.
# These memory intensive activations are also less compute intensive which makes activation checkpointing more efficient for LLMs (20B+).
# See Reducing Activation Recomputation in Large Transformer Models: https://arxiv.org/abs/2205.05198 for more details.
# 'full' will checkpoint the entire transformer layer.
activations_checkpoint_granularity: null # 'selective' or 'full'
activations_checkpoint_method: null # 'uniform', 'block'
# 'uniform' divides the total number of transformer layers and checkpoints the input activation
# of each chunk at the specified granularity. When used with 'selective', 'uniform' checkpoints all attention blocks in the model.
# 'block' checkpoints the specified number of layers per pipeline stage at the specified granularity
activations_checkpoint_num_layers: null
# when using 'uniform' this creates groups of transformer layers to checkpoint. Usually set to 1. Increase to save more memory.
# when using 'block' this this will checkpoint the first activations_checkpoint_num_layers per pipeline stage.
num_micro_batches_with_partial_activation_checkpoints: null
# This feature is valid only when used with pipeline-model-parallelism.
# When an integer value is provided, it sets the number of micro-batches where only a partial number of Transformer layers get checkpointed
# and recomputed within a window of micro-batches. The rest of micro-batches in the window checkpoint all Transformer layers. The size of window is
# set by the maximum outstanding micro-batch backpropagations, which varies at different pipeline stages. The number of partial layers to checkpoint
# per micro-batch is set by 'activations_checkpoint_num_layers' with 'activations_checkpoint_method' of 'block'.
# This feature enables using activation checkpoint at a fraction of micro-batches up to the point of full GPU memory usage.
activations_checkpoint_layers_per_pipeline: null
# This feature is valid only when used with pipeline-model-parallelism.
# When an integer value (rounded down when float is given) is provided, it sets the number of Transformer layers to skip checkpointing at later
# pipeline stages. For example, 'activations_checkpoint_layers_per_pipeline' of 3 makes pipeline stage 1 to checkpoint 3 layers less than
# stage 0 and stage 2 to checkpoint 6 layers less stage 0, and so on. This is possible because later pipeline stage
# uses less GPU memory with fewer outstanding micro-batch backpropagations. Used with 'num_micro_batches_with_partial_activation_checkpoints',
# this feature removes most of activation checkpoints at the last pipeline stage, which is the critical execution path.

## Sequence Parallelism
# Makes tensor parallelism more memory efficient for LLMs (20B+) by parallelizing layer norms and dropout sequentially
# See Reducing Activation Recomputation in Large Transformer Models: https://arxiv.org/abs/2205.05198 for more details.
sequence_parallel: False

## Transformer Engine
transformer_engine: True
fp8: False # enables fp8 in TransformerLayer forward
fp8_e4m3: False # sets fp8_format = recipe.Format.E4M3
fp8_hybrid: False # sets fp8_format = recipe.Format.HYBRID
fp8_margin: 0 # scaling margin
fp8_interval: 1 # scaling update interval
fp8_amax_history_len: 1 # Number of steps for which amax history is recorded per tensor
fp8_amax_compute_algo: most_recent # 'most_recent' or 'max'. Algorithm for computing amax from history
reduce_amax: True # Perform reduction to sync amax tensors across GPUs after every iteration
use_emha: False # Use fused multi-head attention for large sequence-length. Note this is not yet supported. Please set to False.

data:
# Path to data must be specified by the user.
# Supports List, String and Dictionary
# List : can override from the CLI: "model.data.data_prefix=[.5,/raid/data/pile/my-gpt3_00_text_document,.5,/raid/data/pile/my-gpt3_01_text_document]",
# Or see example below:
# data_prefix:
# - .5
# - /raid/data/pile/my-gpt3_00_text_document
# - .5
# - /raid/data/pile/my-gpt3_01_text_document
# Dictionary: can override from CLI "model.data.data_prefix"={"train":[1.0, /path/to/data], "validation":/path/to/data, "test":/path/to/test}
# Or see example below:
# "model.data.data_prefix: {train:[1.0,/path/to/data], validation:[/path/to/data], test:[/path/to/test]}"
# data_prefix: ???
index_mapping_dir: null # path to save index mapping .npy files, by default will save in the same location as data_prefix
data_impl: mmap
splits_string: 900,50,50
seq_length: ${model.encoder_seq_length}
skip_warmup: True
num_workers: 2
dataloader_type: single # cyclic
reset_position_ids: False # Reset position ids after end-of-document token
reset_attention_mask: False # Reset attention mask after end-of-document token
eod_mask_loss: False # Mask loss for the end of document tokens
validation_drop_last: True # Set to false if the last partial validation samples is to be consumed
no_seqlen_plus_one_input_tokens: False # Set to True to disable fetching (sequence length + 1) input tokens, instead get (sequence length) input tokens and mask the last token
pad_samples_to_global_batch_size: False # Set to True if you want to pad the last partial batch with -1's to equal global batch size
shuffle_documents: True # Set to False to disable documents shuffling. Sample index will still be shuffled

# Nsys profiling options
nsys_profile:
enabled: False
start_step: 10 # Global batch to start profiling
end_step: 10 # Global batch to end profiling
ranks: [0] # Global rank IDs to profile
gen_shape: False # Generate model and kernel details including input shapes

optim:
name: fused_adam
lr: 2e-4
weight_decay: 0.01
betas:
- 0.9
- 0.98
sched:
name: CosineAnnealing
warmup_steps: 500
constant_steps: 50000
min_lr: 2e-5
37 changes: 37 additions & 0 deletions examples/nlp/language_modeling/conf/megatron_llama_inference.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
inference:
greedy: False # Whether or not to use sampling ; use greedy decoding otherwise
top_k: 0 # The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p: 0.9 # If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.
temperature: 1.0 # sampling temperature
add_BOS: True # add the bos token at the begining of the prompt
tokens_to_generate: 30 # The minimum length of the sequence to be generated.
all_probs: False # whether return the log prob for all the tokens in vocab
repetition_penalty: 1.2 # The parameter for repetition penalty. 1.0 means no penalty.
min_tokens_to_generate: 0 # The minimum length of the sequence to be generated.
compute_logprob: False # a flag used to compute logprob of all the input text, a very special case of running inference, default False
end_strings: ["</s>"] # generation will stop when one of these tokens is generated

trainer:
devices: 1
num_nodes: 1
accelerator: gpu
logger: False # logger provided by exp_manager
precision: 32 # 16, 32, or bf16

tensor_model_parallel_size: -1
pipeline_model_parallel_size: -1
pipeline_model_parallel_split_rank: -1 # used for encoder and decoder model (0 for others)
gpt_model_file: null # GPT nemo file path
checkpoint_dir: null # checkpoint file dir. This is used to load the PTL checkpoint generated during the GPT training
checkpoint_name: null # PTL checkpoint file name, only used for PTL checkpoint loading
hparams_file: null # model configuration file, only used for PTL checkpoint loading
prompts: # prompts for GPT inference
- "Q: How are you?"
- "Q: How big is the universe?"
server: False # whether launch the API server
port: 5555 # the port number for the inference server
web_server: False # whether launch the web inference server
share: False # whether create a public URL
username: test # user name for web client
password: test2 # password for web client
web_port: 9889 # the port number of the web server
Loading

0 comments on commit 35b4e7e

Please sign in to comment.