forked from NVIDIA/NeMo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Mistral 7b conversion script (NVIDIA#8052)
* Import script for mistral-7b. From mistral checkpoint not hf. Pending: support for block-diagonal attention mask. Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * add window_size to nemo_config. Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * Switch from Mistral checkpoint to HF-Mistral. Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * Force lowercase when checking for normalization type. Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> * NeMo-Mistral-7B to HF-Mistral-7B. Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> --------- Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Eric Harper <complex451@gmail.com>
- Loading branch information
1 parent
983e178
commit b159eab
Showing
3 changed files
with
567 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
341 changes: 341 additions & 0 deletions
341
scripts/nlp_language_modeling/convert_hf_mistral_7b_to_nemo.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
r""" | ||
Conversion script to convert HuggingFace Mistral-7B checkpoints into nemo checkpoint. | ||
Example to run this conversion script: | ||
python convert_hf_mistral_7b_to_nemo.py \ | ||
--in-file <path_to_mistral_checkpoints_folder> \ | ||
--out-file <path_to_output_nemo_file> \ | ||
[--fast-swiglu\ | ||
""" | ||
|
||
|
||
import json | ||
import os | ||
from argparse import ArgumentParser | ||
from collections import OrderedDict | ||
|
||
import torch | ||
import torch.nn | ||
from omegaconf import OmegaConf | ||
from pytorch_lightning.core.saving import _load_state as ptl_load_state | ||
from pytorch_lightning.trainer.trainer import Trainer | ||
from sentencepiece import SentencePieceProcessor | ||
|
||
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel | ||
from nemo.collections.nlp.parts.nlp_overrides import ( | ||
GradScaler, | ||
MegatronHalfPrecisionPlugin, | ||
NLPDDPStrategy, | ||
NLPSaveRestoreConnector, | ||
PipelineMixedPrecisionPlugin, | ||
) | ||
from nemo.utils import logging | ||
|
||
|
||
def get_args(): | ||
parser = ArgumentParser() | ||
parser.add_argument( | ||
"--in-file", type=str, default=None, required=True, help="Path to Huggingface Mistral-7b checkpoints", | ||
) | ||
parser.add_argument("--out-file", type=str, default=None, required=True, help="Path to output .nemo file.") | ||
parser.add_argument("--precision", type=str, default="32", help="Model precision") | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def load_model(cls, checkpoint, strict, **kwargs): | ||
try: | ||
if 'cfg' in kwargs: | ||
model = ptl_load_state(cls, checkpoint, strict=strict, **kwargs) | ||
else: | ||
model = cls(cfg=checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY], **kwargs) | ||
for name, module in model.named_parameters(): | ||
if name in checkpoint['state_dict']: | ||
module.data = checkpoint['state_dict'][name] | ||
checkpoint['state_dict'].pop(name) | ||
else: | ||
print(f"Unexpected key: {name} not in checkpoint but in model.") | ||
|
||
for name, buffer in model.named_buffers(): | ||
if name in checkpoint['state_dict']: | ||
buffer.data = checkpoint['state_dict'][name] | ||
checkpoint['state_dict'].pop(name) | ||
|
||
if len(checkpoint['state_dict'].keys()) != 0: | ||
raise RuntimeError( | ||
f"Additional keys: {checkpoint['state_dict'].keys()} in checkpoint but not in model." | ||
) | ||
|
||
# register the artifacts | ||
cfg = checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY] | ||
if cfg.tokenizer.model is not None: | ||
model.register_artifact("tokenizer.tokenizer_model", cfg.tokenizer.model) | ||
if cfg.tokenizer.vocab_file is not None: | ||
model.register_artifact("tokenizer.vocab_file", cfg.tokenizer.vocab_file) | ||
if cfg.tokenizer.merge_file is not None: | ||
model.register_artifact("tokenizer.merge_file", cfg.tokenizer.merge_file) | ||
finally: | ||
cls._set_model_restore_state(is_being_restored=False) | ||
return model | ||
|
||
|
||
def load_config(mistral_config, tokenizer_path): | ||
nemo_config = OmegaConf.load( | ||
os.path.join(os.path.dirname(__file__), '../../examples/nlp/language_modeling/conf/megatron_llama_config.yaml') | ||
).model | ||
# akoumparouli: verify this. | ||
nemo_config.encoder_seq_length = mistral_config['sliding_window'] | ||
nemo_config.num_layers = int(mistral_config['num_hidden_layers']) | ||
nemo_config.hidden_size = mistral_config['hidden_size'] | ||
nemo_config.ffn_hidden_size = mistral_config['intermediate_size'] | ||
nemo_config.num_attention_heads = mistral_config['num_attention_heads'] | ||
nemo_config.max_position_embeddings = mistral_config['max_position_embeddings'] | ||
nemo_config.window_size = [mistral_config['sliding_window'], 0] | ||
nemo_config.init_method_std = mistral_config['initializer_range'] | ||
# RMSNorm's epsilon. | ||
nemo_config.layernorm_epsilon = mistral_config['rms_norm_eps'] | ||
nemo_config.normalization = 'rmsnorm' | ||
|
||
if 'num_key_value_heads' in mistral_config: | ||
nemo_config.num_query_groups = mistral_config['num_key_value_heads'] | ||
nemo_config.use_cpu_initialization = True | ||
# Mistral uses SiLU, but it is the same as swish with beta = 1. | ||
nemo_config.activation = 'fast-swiglu' | ||
|
||
nemo_config.tokenizer.model = tokenizer_path | ||
# TODO(@akoumparouli): rope_scaling. | ||
nemo_config['rotary_base'] = mistral_config['rope_theta'] | ||
|
||
base = 128 | ||
while mistral_config['vocab_size'] % base != 0: | ||
base //= 2 | ||
nemo_config.make_vocab_size_divisible_by = base | ||
|
||
return nemo_config | ||
|
||
|
||
def load_mistral_ckpt(dir): | ||
params_file = os.path.join(dir, 'config.json') | ||
assert os.path.exists(params_file) | ||
with open(params_file, 'r') as fp: | ||
model_args = json.load(fp) | ||
|
||
ckpt = OrderedDict() | ||
ckpt['state_dict'] = OrderedDict() | ||
for i in range(2): | ||
ckpt_file = f'pytorch_model-0000{i+1}-of-00002.bin' | ||
ckpt_path = os.path.join(dir, ckpt_file) | ||
assert os.path.exists(ckpt_path) | ||
ckpt.update(torch.load(ckpt_path)) | ||
tokenizer_file = os.path.join(dir, 'tokenizer.model') | ||
assert os.path.exists(tokenizer_file) | ||
tokenizer = SentencePieceProcessor(model_file=tokenizer_file) | ||
assert tokenizer.get_piece_size() == model_args['vocab_size'] | ||
return model_args, ckpt, tokenizer | ||
|
||
|
||
def convert(args): | ||
logging.info(f"loading checkpoint {args.in_file}") | ||
|
||
model_args, ckpt, tokenizer = load_mistral_ckpt(args.in_file) | ||
nemo_config = load_config(model_args, os.path.join(args.in_file, 'tokenizer.model')) | ||
logging.info(f"loaded checkpoint {args.in_file}") | ||
|
||
if args.precision in ["32", "16"]: | ||
precision = int(float(args.precision)) | ||
elif args.precision in ["bf16", "bf16-mixed"]: | ||
if torch.cuda.is_available() and torch.cuda.is_bf16_supported(): | ||
precision = args.precision | ||
else: | ||
logging.warning("BF16 is not supported on this device. Using FP16 instead.") | ||
precision = args.precision[2:] # prune bf in string | ||
else: | ||
precision = args.precision | ||
|
||
plugins = [] | ||
if precision in [16, '16', 'bf16', '16-mixed', 'bf16-mixed']: | ||
scaler = None | ||
if precision in [16, '16', '16-mixed']: | ||
scaler = GradScaler( | ||
init_scale=nemo_config.get('native_amp_init_scale', 2 ** 32), | ||
growth_interval=nemo_config.get('native_amp_growth_interval', 1000), | ||
hysteresis=nemo_config.get('hysteresis', 2), | ||
) | ||
# MixedPrecisionPlugin in PTL >= 2.0 requires precision to be 16-mixed or bf16-mixed | ||
plugin_precision = '16-mixed' | ||
else: | ||
plugin_precision = 'bf16-mixed' | ||
|
||
if nemo_config.get('megatron_amp_O2', False): | ||
plugins.append(MegatronHalfPrecisionPlugin(precision=plugin_precision, device='cuda', scaler=scaler)) | ||
else: | ||
plugins.append(PipelineMixedPrecisionPlugin(precision=plugin_precision, device='cuda', scaler=scaler)) | ||
|
||
if precision == 32: | ||
dtype = torch.float32 | ||
elif precision in [16, "16", "16-mixed"]: | ||
dtype = torch.float16 | ||
elif precision in ["bf16", "bf16-mixed"]: | ||
dtype = torch.bfloat16 | ||
else: | ||
dtype = torch.float32 # fallback | ||
|
||
nemo_config.precision = precision | ||
logging.info(f"nemo_config: {nemo_config}") | ||
|
||
trainer = Trainer(plugins=plugins, accelerator='cpu', precision=precision, strategy=NLPDDPStrategy()) | ||
|
||
hidden_size = nemo_config.hidden_size | ||
head_num = nemo_config.num_attention_heads | ||
head_size = hidden_size // head_num | ||
num_layers = nemo_config.num_layers | ||
|
||
mcore_gpt = nemo_config.mcore_gpt | ||
|
||
assert mcore_gpt == nemo_config.get( | ||
'transformer_engine', False | ||
), "mcore_gpt transformer_engine must be enabled (or disabled) together." | ||
|
||
param_to_weights = lambda param: param.float() | ||
|
||
checkpoint = OrderedDict() | ||
checkpoint['state_dict'] = OrderedDict() | ||
|
||
embed_weight = ckpt[f'model.embed_tokens.weight'] | ||
if mcore_gpt: | ||
embed_weights_base_name = f'model.embedding.word_embeddings.weight' | ||
else: | ||
embed_weights_base_name = f'model.language_model.embedding.word_embeddings.weight' | ||
checkpoint['state_dict'][embed_weights_base_name] = param_to_weights(embed_weight) | ||
|
||
if nemo_config.num_query_groups is None or nemo_config.num_query_groups == head_num: | ||
num_query_groups = head_num | ||
else: | ||
num_query_groups = nemo_config.num_query_groups | ||
assert head_num % num_query_groups == 0, 'head_num must be divisible by num_query_groups' | ||
if mcore_gpt: | ||
assert nemo_config.activation.startswith('fast-'), 'mcore only supports fast version of gated linear unit.' | ||
|
||
for l in range(int(num_layers)): | ||
print(f"converting layer {l}") | ||
old_tensor_shape = ckpt[f'model.layers.{l}.self_attn.q_proj.weight'].size() | ||
new_q_tensor_shape = (head_num, head_size) + old_tensor_shape[1:] | ||
new_kv_tensor_shape = (num_query_groups, head_size) + old_tensor_shape[1:] | ||
|
||
q = ckpt[f'model.layers.{l}.self_attn.q_proj.weight'].view(*new_q_tensor_shape) | ||
k = ckpt[f'model.layers.{l}.self_attn.k_proj.weight'].view(*new_kv_tensor_shape) | ||
v = ckpt[f'model.layers.{l}.self_attn.v_proj.weight'].view(*new_kv_tensor_shape) | ||
|
||
# Note: we assume wq & wk have been appropriately transposed to work with | ||
# NeMo/Megatron's rotary embedding. The reference checkpoint/implementation | ||
# will not work OotB without transposing wq/wk matrices. | ||
heads_per_group = head_num // num_query_groups | ||
qkv_weights_l = [] | ||
for i in range(num_query_groups): | ||
qkv_weights_l.append(q[i * heads_per_group : (i + 1) * heads_per_group, :, :]) | ||
qkv_weights_l.append(k[i : i + 1, :, :]) | ||
qkv_weights_l.append(v[i : i + 1, :, :]) | ||
qkv_weights = torch.cat(qkv_weights_l) | ||
assert qkv_weights.ndim == 3, qkv_weights.shape | ||
assert qkv_weights.shape[0] == (heads_per_group + 2) * num_query_groups, qkv_weights.shape | ||
assert qkv_weights.shape[1] == head_size, qkv_weights.shape | ||
assert qkv_weights.shape[2] == old_tensor_shape[1], qkv_weights.shape | ||
qkv_weights = qkv_weights.reshape([head_size * (head_num + 2 * num_query_groups), hidden_size]) | ||
if mcore_gpt: | ||
qkv_weights_base_name = f'model.decoder.layers.{l}.self_attention.linear_qkv.weight' | ||
else: | ||
qkv_weights_base_name = f'model.language_model.encoder.layers.{l}.self_attention.query_key_value.weight' | ||
checkpoint['state_dict'][qkv_weights_base_name] = param_to_weights(qkv_weights) | ||
|
||
# attention dense | ||
o_weight = ckpt[f'model.layers.{l}.self_attn.o_proj.weight'] | ||
if mcore_gpt: | ||
o_weight_base_name = f'model.decoder.layers.{l}.self_attention.linear_proj.weight' | ||
else: | ||
o_weight_base_name = f'model.language_model.encoder.layers.{l}.self_attention.dense.weight' | ||
checkpoint['state_dict'][o_weight_base_name] = param_to_weights(o_weight) | ||
|
||
# MLP | ||
mlp_down_weight = ckpt[f'model.layers.{l}.mlp.gate_proj.weight'] | ||
mlp_gate_weight = ckpt[f'model.layers.{l}.mlp.up_proj.weight'] | ||
if mcore_gpt: | ||
mlp_down_base_name = f'model.decoder.layers.{l}.mlp.linear_fc1.weight' | ||
else: | ||
mlp_down_base_name = f'model.language_model.encoder.layers.{l}.mlp.dense_h_to_4h.weight' | ||
mlp_down_weight = torch.cat((mlp_down_weight, mlp_gate_weight), axis=0) | ||
checkpoint['state_dict'][mlp_down_base_name] = param_to_weights(mlp_down_weight) | ||
|
||
mlp_up_weight = ckpt[f'model.layers.{l}.mlp.down_proj.weight'] | ||
if mcore_gpt: | ||
mlp_up_base_name = f'model.decoder.layers.{l}.mlp.linear_fc2.weight' | ||
else: | ||
mlp_up_base_name = f'model.language_model.encoder.layers.{l}.mlp.dense_4h_to_h.weight' | ||
checkpoint['state_dict'][mlp_up_base_name] = param_to_weights(mlp_up_weight) | ||
|
||
# LayerNorm | ||
input_ln_weight = ckpt[f'model.layers.{l}.input_layernorm.weight'] | ||
if mcore_gpt: | ||
input_ln_base_name = f'model.decoder.layers.{l}.self_attention.linear_qkv.layer_norm_weight' | ||
else: | ||
input_ln_base_name = f'model.language_model.encoder.layers.{l}.input_layernorm.weight' | ||
checkpoint['state_dict'][input_ln_base_name] = param_to_weights(input_ln_weight) | ||
|
||
post_attn_ln_weight = ckpt[f'model.layers.{l}.post_attention_layernorm.weight'] | ||
if mcore_gpt: | ||
post_attn_ln_base_name = f'model.decoder.layers.{l}.mlp.linear_fc1.layer_norm_weight' | ||
else: | ||
post_attn_ln_base_name = f'model.language_model.encoder.layers.{l}.post_attention_layernorm.weight' | ||
checkpoint['state_dict'][post_attn_ln_base_name] = param_to_weights(post_attn_ln_weight) | ||
|
||
print(f"done layer {l}") | ||
|
||
final_ln_weight = ckpt[f'model.norm.weight'] | ||
if mcore_gpt: | ||
final_ln_base_name = f'model.decoder.final_layernorm.weight' | ||
else: | ||
final_ln_base_name = f'model.language_model.encoder.final_layernorm.weight' | ||
checkpoint['state_dict'][final_ln_base_name] = param_to_weights(final_ln_weight) | ||
|
||
output_layer_weight = ckpt[f'lm_head.weight'] | ||
if mcore_gpt: | ||
output_layer_base_name = f'model.output_layer.weight' | ||
else: | ||
output_layer_base_name = f'model.language_model.output_layer.weight' | ||
checkpoint['state_dict'][output_layer_base_name] = param_to_weights(output_layer_weight) | ||
|
||
checkpoint[MegatronGPTModel.CHECKPOINT_HYPER_PARAMS_KEY] = nemo_config | ||
del ckpt | ||
|
||
if nemo_config.get('megatron_amp_O2', False): | ||
keys = list(checkpoint['state_dict'].keys()) | ||
for key in keys: | ||
checkpoint['state_dict'][key.replace('model.', 'model.module.', 1)] = checkpoint['state_dict'].pop(key) | ||
|
||
model = load_model(MegatronGPTModel, checkpoint, strict=False, trainer=trainer) | ||
|
||
model._save_restore_connector = NLPSaveRestoreConnector() | ||
|
||
# cast to target precision and disable cpu init | ||
model = model.to(dtype=dtype) | ||
model.cfg.use_cpu_initialization = False | ||
|
||
model.save_to(args.out_file) | ||
logging.info(f'NeMo model saved to: {args.out_file}') | ||
|
||
|
||
if __name__ == '__main__': | ||
args = get_args() | ||
convert(args) |
Oops, something went wrong.