Skip to content

Commit

Permalink
bevy_render: add torus and capsule shape (bevyengine#1223)
Browse files Browse the repository at this point in the history
* bevy_render: add torus shape

* bevy_render: add capsule shape

* bevy_render: reorganize shape module

* bevy_render: add more docs
  • Loading branch information
jakobhellermann authored and rparrett committed Jan 27, 2021
1 parent 58054da commit 0b84339
Show file tree
Hide file tree
Showing 4 changed files with 585 additions and 72 deletions.
379 changes: 379 additions & 0 deletions crates/bevy_render/src/mesh/shape/capsule.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,379 @@
use crate::{
mesh::{Indices, Mesh},
pipeline::PrimitiveTopology,
};
use bevy_math::{Vec2, Vec3};

/// A cylinder with hemispheres at the top and bottom
pub struct Capsule {
/// Radius on the xz plane.
pub radius: f32,
/// Number of sections in cylinder between hemispheres.
pub rings: usize,
/// Height of the middle cylinder on the y axis, excluding the hemispheres.
pub depth: f32,
/// Number of latitudes, distributed by inclination. Must be even.
pub latitudes: usize,
/// Number of longitudes, or meridians, distributed by azimuth.
pub longitudes: usize,
/// Manner in which UV coordinates are distributed vertically.
pub uv_profile: CapsuleUvProfile,
}
impl Default for Capsule {
fn default() -> Self {
Capsule {
radius: 0.5,
rings: 0,
depth: 1.0,
latitudes: 16,
longitudes: 32,
uv_profile: CapsuleUvProfile::Aspect,
}
}
}

#[derive(Clone, Copy)]
/// Manner in which UV coordinates are distributed vertically.
pub enum CapsuleUvProfile {
/// UV space is distributed by how much of the capsule consists of the hemispheres.
Aspect,
/// Hemispheres get UV space according to the ratio of latitudes to rings.
Uniform,
/// Upper third of the texture goes to the northern hemisphere, middle third to the cylinder and lower third to the southern one.
Fixed,
}

impl Default for CapsuleUvProfile {
fn default() -> Self {
CapsuleUvProfile::Aspect
}
}

impl From<Capsule> for Mesh {
#[allow(clippy::clippy::needless_range_loop)]
fn from(capsule: Capsule) -> Self {
// code adapted from https://behreajj.medium.com/making-a-capsule-mesh-via-script-in-five-3d-environments-c2214abf02db

let Capsule {
radius,
rings,
depth,
latitudes,
longitudes,
uv_profile,
} = capsule;

let calc_middle = rings > 0;
let half_lats = latitudes / 2;
let half_latsn1 = half_lats - 1;
let half_latsn2 = half_lats - 2;
let ringsp1 = rings + 1;
let lonsp1 = longitudes + 1;
let half_depth = depth * 0.5;
let summit = half_depth + radius;

// Vertex index offsets.
let vert_offset_north_hemi = longitudes;
let vert_offset_north_equator = vert_offset_north_hemi + lonsp1 * half_latsn1;
let vert_offset_cylinder = vert_offset_north_equator + lonsp1;
let vert_offset_south_equator = if calc_middle {
vert_offset_cylinder + lonsp1 * rings
} else {
vert_offset_cylinder
};
let vert_offset_south_hemi = vert_offset_south_equator + lonsp1;
let vert_offset_south_polar = vert_offset_south_hemi + lonsp1 * half_latsn2;
let vert_offset_south_cap = vert_offset_south_polar + lonsp1;

// Initialize arrays.
let vert_len = vert_offset_south_cap + longitudes;

let mut vs: Vec<Vec3> = vec![Vec3::default(); vert_len];
let mut vts: Vec<Vec2> = vec![Vec2::default(); vert_len];
let mut vns: Vec<Vec3> = vec![Vec3::default(); vert_len];

let to_theta = 2.0 * std::f32::consts::PI / longitudes as f32;
let to_phi = std::f32::consts::PI / latitudes as f32;
let to_tex_horizontal = 1.0 / longitudes as f32;
let to_tex_vertical = 1.0 / half_lats as f32;

let vt_aspect_ratio = match uv_profile {
CapsuleUvProfile::Aspect => radius / (depth + radius + radius),
CapsuleUvProfile::Uniform => half_lats as f32 / (ringsp1 + latitudes) as f32,
CapsuleUvProfile::Fixed => 1.0 / 3.0,
};
let vt_aspect_north = 1.0 - vt_aspect_ratio;
let vt_aspect_south = vt_aspect_ratio;

let mut theta_cartesian: Vec<Vec2> = vec![Vec2::default(); longitudes];
let mut rho_theta_cartesian: Vec<Vec2> = vec![Vec2::default(); longitudes];
let mut s_texture_cache: Vec<f32> = vec![0.0; lonsp1];

for j in 0..longitudes {
let jf = j as f32;
let s_texture_polar = 1.0 - ((jf + 0.5) * to_tex_horizontal);
let theta = jf * to_theta;

let cos_theta = theta.cos();
let sin_theta = theta.sin();

theta_cartesian[j] = Vec2::new(cos_theta, sin_theta);
rho_theta_cartesian[j] = Vec2::new(radius * cos_theta, radius * sin_theta);

// North.
vs[j] = Vec3::new(0.0, summit, 0.0);
vts[j] = Vec2::new(s_texture_polar, 1.0);
vns[j] = Vec3::new(0.0, 1.0, 0.0);

// South.
let idx = vert_offset_south_cap + j;
vs[idx] = Vec3::new(0.0, -summit, 0.0);
vts[idx] = Vec2::new(s_texture_polar, 0.0);
vns[idx] = Vec3::new(0.0, -1.0, 0.0);
}

// Equatorial vertices.
for j in 0..lonsp1 {
let s_texture = 1.0 - j as f32 * to_tex_horizontal;
s_texture_cache[j] = s_texture;

// Wrap to first element upon reaching last.
let j_mod = j % longitudes;
let tc = theta_cartesian[j_mod];
let rtc = rho_theta_cartesian[j_mod];

// North equator.
let idxn = vert_offset_north_equator + j;
vs[idxn] = Vec3::new(rtc.x, half_depth, -rtc.y);
vts[idxn] = Vec2::new(s_texture, vt_aspect_north);
vns[idxn] = Vec3::new(tc.x, 0.0, -tc.y);

// South equator.
let idxs = vert_offset_south_equator + j;
vs[idxs] = Vec3::new(rtc.x, -half_depth, -rtc.y);
vts[idxs] = Vec2::new(s_texture, vt_aspect_south);
vns[idxs] = Vec3::new(tc.x, 0.0, -tc.y);
}

// Hemisphere vertices.
for i in 0..half_latsn1 {
let ip1f = i as f32 + 1.0;
let phi = ip1f * to_phi;

// For coordinates.
let cos_phi_south = phi.cos();
let sin_phi_south = phi.sin();

// Symmetrical hemispheres mean cosine and sine only needs
// to be calculated once.
let cos_phi_north = sin_phi_south;
let sin_phi_north = -cos_phi_south;

let rho_cos_phi_north = radius * cos_phi_north;
let rho_sin_phi_north = radius * sin_phi_north;
let z_offset_north = half_depth - rho_sin_phi_north;

let rho_cos_phi_south = radius * cos_phi_south;
let rho_sin_phi_south = radius * sin_phi_south;
let z_offset_sout = -half_depth - rho_sin_phi_south;

// For texture coordinates.
let t_tex_fac = ip1f * to_tex_vertical;
let cmpl_tex_fac = 1.0 - t_tex_fac;
let t_tex_north = cmpl_tex_fac + vt_aspect_north * t_tex_fac;
let t_tex_south = cmpl_tex_fac * vt_aspect_south;

let i_lonsp1 = i * lonsp1;
let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
let vert_curr_lat_south = vert_offset_south_hemi + i_lonsp1;

for j in 0..lonsp1 {
let j_mod = j % longitudes;

let s_texture = s_texture_cache[j];
let tc = theta_cartesian[j_mod];

// North hemisphere.
let idxn = vert_curr_lat_north + j;
vs[idxn] = Vec3::new(
rho_cos_phi_north * tc.x,
z_offset_north,
-rho_cos_phi_north * tc.y,
);
vts[idxn] = Vec2::new(s_texture, t_tex_north);
vns[idxn] = Vec3::new(cos_phi_north * tc.x, -sin_phi_north, -cos_phi_north * tc.y);

// South hemisphere.
let idxs = vert_curr_lat_south + j;
vs[idxs] = Vec3::new(
rho_cos_phi_south * tc.x,
z_offset_sout,
-rho_cos_phi_south * tc.y,
);
vts[idxs] = Vec2::new(s_texture, t_tex_south);
vns[idxs] = Vec3::new(cos_phi_south * tc.x, -sin_phi_south, -cos_phi_south * tc.y);
}
}

// Cylinder vertices.
if calc_middle {
// Exclude both origin and destination edges
// (North and South equators) from the interpolation.
let to_fac = 1.0 / ringsp1 as f32;
let mut idx_cyl_lat = vert_offset_cylinder;

for h in 1..ringsp1 {
let fac = h as f32 * to_fac;
let cmpl_fac = 1.0 - fac;
let t_texture = cmpl_fac * vt_aspect_north + fac * vt_aspect_south;
let z = half_depth - depth * fac;

for j in 0..lonsp1 {
let j_mod = j % longitudes;
let tc = theta_cartesian[j_mod];
let rtc = rho_theta_cartesian[j_mod];
let s_texture = s_texture_cache[j];

vs[idx_cyl_lat] = Vec3::new(rtc.x, z, -rtc.y);
vts[idx_cyl_lat] = Vec2::new(s_texture, t_texture);
vns[idx_cyl_lat] = Vec3::new(tc.x, 0.0, -tc.y);

idx_cyl_lat += 1;
}
}
}

// Triangle indices.

// Stride is 3 for polar triangles;
// stride is 6 for two triangles forming a quad.
let lons3 = longitudes * 3;
let lons6 = longitudes * 6;
let hemi_lons = half_latsn1 * lons6;

let tri_offset_north_hemi = lons3;
let tri_offset_cylinder = tri_offset_north_hemi + hemi_lons;
let tri_offset_south_hemi = tri_offset_cylinder + ringsp1 * lons6;
let tri_offset_south_cap = tri_offset_south_hemi + hemi_lons;

let fs_len = tri_offset_south_cap + lons3;
let mut tris: Vec<u32> = vec![0; fs_len];

// Polar caps.
let mut i = 0;
let mut k = 0;
let mut m = tri_offset_south_cap;
while i < longitudes {
// North.
tris[k] = i as u32;
tris[k + 1] = (vert_offset_north_hemi + i) as u32;
tris[k + 2] = (vert_offset_north_hemi + i + 1) as u32;

// South.
tris[m] = (vert_offset_south_cap + i) as u32;
tris[m + 1] = (vert_offset_south_polar + i + 1) as u32;
tris[m + 2] = (vert_offset_south_polar + i) as u32;

i += 1;
k += 3;
m += 3;
}

// Hemispheres.

let mut i = 0;
let mut k = tri_offset_north_hemi;
let mut m = tri_offset_south_hemi;

while i < half_latsn1 {
let i_lonsp1 = i * lonsp1;

let vert_curr_lat_north = vert_offset_north_hemi + i_lonsp1;
let vert_next_lat_north = vert_curr_lat_north + lonsp1;

let vert_curr_lat_south = vert_offset_south_equator + i_lonsp1;
let vert_next_lat_south = vert_curr_lat_south + lonsp1;

let mut j = 0;
while j < longitudes {
// North.
let north00 = vert_curr_lat_north + j;
let north01 = vert_next_lat_north + j;
let north11 = vert_next_lat_north + j + 1;
let north10 = vert_curr_lat_north + j + 1;

tris[k] = north00 as u32;
tris[k + 1] = north11 as u32;
tris[k + 2] = north10 as u32;

tris[k + 3] = north00 as u32;
tris[k + 4] = north01 as u32;
tris[k + 5] = north11 as u32;

// South.
let south00 = vert_curr_lat_south + j;
let south01 = vert_next_lat_south + j;
let south11 = vert_next_lat_south + j + 1;
let south10 = vert_curr_lat_south + j + 1;

tris[m] = south00 as u32;
tris[m + 1] = south11 as u32;
tris[m + 2] = south10 as u32;

tris[m + 3] = south00 as u32;
tris[m + 4] = south01 as u32;
tris[m + 5] = south11 as u32;

j += 1;
k += 6;
m += 6;
}

i += 1;
}

// Cylinder.
let mut i = 0;
let mut k = tri_offset_cylinder;

while i < ringsp1 {
let vert_curr_lat = vert_offset_north_equator + i * lonsp1;
let vert_next_lat = vert_curr_lat + lonsp1;

let mut j = 0;
while j < longitudes {
let cy00 = vert_curr_lat + j;
let cy01 = vert_next_lat + j;
let cy11 = vert_next_lat + j + 1;
let cy10 = vert_curr_lat + j + 1;

tris[k] = cy00 as u32;
tris[k + 1] = cy11 as u32;
tris[k + 2] = cy10 as u32;

tris[k + 3] = cy00 as u32;
tris[k + 4] = cy01 as u32;
tris[k + 5] = cy11 as u32;

j += 1;
k += 6;
}

i += 1;
}

let vs: Vec<[f32; 3]> = vs.into_iter().map(Into::into).collect();
let vns: Vec<[f32; 3]> = vns.into_iter().map(Into::into).collect();
let vts: Vec<[f32; 2]> = vts.into_iter().map(Into::into).collect();

assert_eq!(vs.len(), vert_len);
assert_eq!(tris.len(), fs_len);

let mut mesh = Mesh::new(PrimitiveTopology::TriangleList);
mesh.set_attribute(Mesh::ATTRIBUTE_POSITION, vs);
mesh.set_attribute(Mesh::ATTRIBUTE_NORMAL, vns);
mesh.set_attribute(Mesh::ATTRIBUTE_UV_0, vts);
mesh.set_indices(Some(Indices::U32(tris)));
mesh
}
}
Loading

0 comments on commit 0b84339

Please sign in to comment.