Skip to content

rromb/edflow

 
 

Repository files navigation

EDFlow - Evaluation Driven workFlow

A small framework for training and evaluating tensorflow models by Mimo Tilbich.

Table of Contents

  1. Setup
  2. Workflow
  3. Example
  4. Other
    1. Parameters
    2. Known Issues
    3. Compatibility
  5. Contributions
  6. LICENSE
  7. Authors

Setup

Clone this repository:

git clone https://github.com/pesser/edflow.git
cd edflow

We provide different conda environments in the folder environments:

  • edflow_tf_cu9.yaml: Use if you have CUDA>=9 available and want to use tensorflow.
  • edflow_pt_cu9.yaml: Use if you have CUDA>=9 available and want to use pytorch.
  • edflow_cpu: Use if you don't have a CUDA>=9 GPU available.

Choose an appropriate environment and execute

conda env create -f environments/<env>.yaml
conda activate <env>
pip install -e .

where <env> is one of the yaml files described above.

Workflow

For more information, look into our documentation.

Example

Tensorflow

cd examples
edflow -t mnist_tf/train.yaml -n hello_tensorflow

Pytorch

cd examples
edflow -t mnist_pytorch/mnist_config.yaml -n hello_pytorch

Other

Parameters

  • --config path/to/config

    yaml file with all information see [Workflow][#Workflow]

  • --checkpoint path/to/checkpoint to restore

  • --noeval only run training

  • --retrain reset global step to zero

Known Issues

Compatibility

Contributions

GitHub-Commits GitHub-Issues GitHub-PRs GitHub-Status GitHub-Stars GitHub-Forks GitHub-Updated

LICENSE

LICENSE

Authors

Mimo Tilbich GitHub-Contributions

Contributors

Patrick Esser
Patrick Esser

💻 🤔
Johannes Haux
Johannes Haux

💻 📖 🤔
rromb
rromb

arwehei
arwehei

📖 🚇
Sandro Braun
Sandro Braun

💻 💡 ⚠️
Conrad Sachweh
Conrad Sachweh

📖 ⚠️
Ritvik Marwaha
Ritvik Marwaha

💡

Thanks goes to these wonderful people (emoji key):

This project follows the all-contributors specification. Contributions of any kind welcome! source/source_files/edflow

About

Logistics of Deep Learning

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%