Python code for computing sun position based on the algorithms from "Solar position algorithm for solar radiation applications" by Ibrahim Reda and Afshin Anreas, Solar Energy (2004). The algorithm calculates "the solar zenith and azimuth angles in the period from the year −2000 to 6000, with uncertainties of ±0.0003°". See http://dx.doi.org/10.1016/j.solener.2003.12.003 for more information.
In this code, the latitude and longitude are positive for North and East, respectively. The azimuth angle is 0 at North and positive towards the east. The zenith angle is 0 at vertical and positive towards the horizon.
Example usage on the command line:
$ usage: sunposition [-h] [--test] [--version] [--citation] [-t,--time T] [-lat,--latitude LAT] [-lon,--longitude LON]
[-e,--elevation ELEV] [-T,--temperature TEMP] [-p,--pressure P] [-a,--atmos_refract A] [-dt DT]
[-r,--radians] [--csv] [--jit]
Compute sun position parameters given the time and location
optional arguments:
-h, --help show this help message and exit
--test Run tests
--version show program's version number and exit
--citation Print citation information
-t,--time T "now" or date and time (UTC) in "YYYY-MM-DD hh:mm:ss.ssssss" format or a (UTC) POSIX timestamp
-lat,--latitude LAT latitude, in decimal degrees, positive for north
-lon,--longitude LON longitude, in decimal degrees, positive for east
-e,--elevation ELEV elevation, in meters
-T,--temperature TEMP
temperature, in degrees celcius
-p,--pressure P atmospheric pressure, in millibar
-a,--atmos_refract A atmospheric refraction at sunrise and sunset, in degrees
-dt DT difference between earth's rotation time (TT) and universal time (UT1)
-r,--radians Output in radians instead of degrees
--csv Comma separated values (time,dt,lat,lon,elev,temp,pressure,az,zen,RA,dec,H)
--jit Enable Numba acceleration (jit compilation time may overwhelm speed-up)
$ sunposition.py
Computing sun position at T = 2021-05-21 06:47:44.644873 + 0.0 s
Lat, Lon, Elev = 51.48 deg, 0.0 deg, 0 m
T, P = 14.6 C, 1013.0 mbar
Results:
Azimuth, zenith = 86.68229367131721 deg, 66.38510410296101 deg
RA, dec, H = 58.28648711185745 deg, 20.241411055526044 deg, 282.7836435018984 deg
$ sunposition.py -t "1953-05-29 05:45:00" -lat 27.9881 -lon 86.9253 -e 8848
Computing sun position at T = 1953-05-29 05:45:00 + 0.0 s
Lat, Lon, Elev = 27.9881 deg, 86.9253 deg, 8848.0 m
T, P = 14.6 C, 1013.0 mbar
Results:
Azimuth, zenith = 137.73675146015 deg, 8.481271417778686 deg
RA, dec, H = 65.7605040841157 deg, 21.576417030912577 deg, 353.8751689030205 deg
Example usage in code:
from pylab import *
#set environment variable NUMBA_DISABLE_JIT = 1 before importing sunposition to disable jit if it negatively impacts performance
# e.g. import os; os.environ['NUMBA_DISABLE_JIT'] = 1
from sunposition import sunpos
from datetime import datetime
#evaluate on a 2 degree grid
lon = linspace(-180,180,181)
lat = linspace(-90,90,91)
LON, LAT = meshgrid(lon,lat)
#at the current time
now = datetime.utcnow()
az,zen = sunpos(now,LAT,LON,0)[:2] #discard RA, dec, H
#convert zenith to elevation
elev = 90 - zen
#convert azimuth to vectors
u, v = cos((90-az)*pi/180), sin((90-az)*pi/180)
#plot
figure()
imshow(elev,cmap=cm.CMRmap,origin='lower',vmin=-90,vmax=90,extent=(-180,180,-90,90))
s = slice(5,-1,5) # equivalent to 5:-1:5
quiver(lon[s],lat[s],u[s,s],v[s,s])
contour(lon,lat,elev,[0])
cb = colorbar()
cb.set_label('Elevation Angle (deg)')
gca().set_aspect('equal')
xticks(arange(-180,181,45)); yticks(arange(-90,91,45))
Citation: Ibrahim Reda, Afshin Andreas, Solar position algorithm for solar radiation applications, Solar Energy, Volume 76, Issue 5, 2004, Pages 577-589, ISSN 0038-092X, http://dx.doi.org/10.1016/j.solener.2003.12.003. Keywords: Global solar irradiance; Solar zenith angle; Solar azimuth angle; VSOP87 theory; Universal time; ΔUT1