Skip to content

Register backcompat s3 methods for keras2 #619

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 82 additions & 1 deletion R/package.R
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,12 @@ tf_v2 <- function() {
tryCatch(tf$python$util$deprecation$silence()$`__enter__`(),
error = function(e) NULL)

if (isNamespaceLoaded("keras")) {
keras2_backcompat_hook()
} else {
setHook(packageEvent("keras", "onLoad"), keras2_backcompat_hook)
}

# TODO: move this into .onAttach, where you either emit immediately if
# already loaded otherwise register emit hook for reticulate
# emit <- get("packageStartupMessage") # R CMD check
Expand All @@ -136,7 +142,6 @@ tf_v2 <- function() {
"a Python installation where the tensorflow module is installed.", call. = FALSE)
})


# provide a common base S3 class for tensors
reticulate::register_class_filter(function(classes) {
if (any(c("tensorflow.python.ops.variables.Variable",
Expand All @@ -160,6 +165,82 @@ is_string <- function(x) {
is.character(x) && length(x) == 1L && !is.na(x)
}


keras2_backcompat_hook <- #function(){}
function(...) {
message("Calling keras2 backcompat hooks")
keras_ns <- asNamespace("keras")

new_model_class_names <- c("keras.src.models.sequential.Sequential",
"keras.models.sequential.Sequential")

generic <- "compose_layer"
method <- keras_ns[["compose_layer.keras.models.Sequential"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

new_model_class_names <- c("keras.src.models.model.Model",
"keras.models.model.Model")

generic <- "fit"
method <- keras_ns[["fit.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "compile"
method <- keras_ns[["compile.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "predict"
method <- keras_ns[["predict.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "evaluate"
method <- keras_ns[["evaluate.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "export_savedmodel"
method <- keras_ns[["export_savedmodel.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "format"
method <- keras_ns[["format.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "print"
method <- keras_ns[["print.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "summary"
method <- keras_ns[["summary.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

generic <- "plot"
method <- keras_ns[["plot.keras.engine.training.Model"]]
envir <- environment(get(generic, keras_ns))
for(name in new_model_class_names)
registerS3method(generic, name, method, envir)

}



#' TensorFlow configuration information
#'
#' @return List with information on the current configuration of TensorFlow.
Expand Down
Loading