-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
1,043 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
FROM python:3.8-slim-buster | ||
|
||
# Create a separate directory for dependencies | ||
WORKDIR /app/requirements | ||
|
||
# Copy requirements.txt into the container | ||
COPY requirements.txt . | ||
|
||
# Install the required packages | ||
RUN pip install --no-cache-dir -r requirements.txt | ||
|
||
# Set the working directory | ||
WORKDIR /app | ||
|
||
# Copy the FastAPI app script into the container | ||
COPY milvus ./milvus | ||
|
||
|
||
# Expose the default port for FastAPI | ||
EXPOSE 8010 | ||
|
||
ENV HOST=host.docker.internal | ||
|
||
# Run the FastAPI app using uvicorn | ||
CMD ["uvicorn", "milvus.main:app", "--host", "0.0.0.0", "--port", "8010"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
# Vector Search Service | ||
|
||
This service provides a FastAPI application that interfaces with a vector database for text embedding and similarity search operations. It is designed to be flexible and allows for the potential integration of various vector databases in the future. | ||
|
||
The service provides the following endpoints: | ||
|
||
- `POST /add_texts`: Add texts to a specified Milvus collection | ||
- `DELETE /delete_docs`: Delete documents from a specified Milvus collection based on an expression | ||
- `POST /similarity_match`: Perform a similarity search and return the top-k similar documents | ||
- `GET /ping`: Health check endpoint | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
# Standard Library | ||
import json | ||
import os | ||
from typing import List | ||
|
||
# Third Party | ||
import requests | ||
from langchain.embeddings.base import Embeddings | ||
|
||
HOST = os.getenv("EMBEDDING_HOST", "localhost") | ||
EMBEDDING_URL = f"http://{HOST}:8020/embed_multiple" | ||
|
||
|
||
def embed_text(texts: List[str]) -> List[List[float]]: | ||
"""Embed a list of texts using a remote service. | ||
Args: | ||
texts (List[str]): List of texts to be embedded. | ||
Returns: | ||
List[List[float]]: List of embedded texts. | ||
""" | ||
headers = {"accept": "application/json", "Content-Type": "application/json"} | ||
data = json.dumps(texts) | ||
|
||
response = requests.post(EMBEDDING_URL, headers=headers, data=data) | ||
response = response.json() | ||
|
||
return response["embeddings"] | ||
|
||
|
||
class CustomEmbeddings(Embeddings): | ||
"""Custom embeddings class that uses a remote service for embedding.""" | ||
|
||
def embed_documents(self, texts: List[str]) -> List[List[float]]: | ||
"""Embed a list of documents. | ||
Args: | ||
texts (List[str]): List of documents to be embedded. | ||
Returns: | ||
List[List[float]]: List of embedded documents. | ||
""" | ||
return embed_text(texts) | ||
|
||
def embed_query(self, text: str) -> List[float]: | ||
"""Embed a single query. | ||
Args: | ||
text (str): Query to be embedded. | ||
Returns: | ||
List[float]: Embedded query. | ||
""" | ||
return embed_text([text])[0] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
# Standard library imports | ||
# Standard Library | ||
import os | ||
from typing import List, Optional | ||
|
||
# Third Party | ||
# Third party imports | ||
from fastapi import FastAPI | ||
from pydantic import BaseModel | ||
|
||
# Local application imports | ||
from .CustomEmbeddings import CustomEmbeddings | ||
from .query_milvus import Milvus | ||
|
||
MILVUS_HOST = os.getenv("MILVUS_HOST", "localhost") | ||
|
||
model = {} | ||
top_re_rank = 5 | ||
top_k_match = 10 | ||
app = FastAPI() | ||
|
||
|
||
class Query(BaseModel): | ||
text: str | ||
collection_name: str | ||
topk: int = top_k_match | ||
rerank: bool = False | ||
topr: int = top_re_rank | ||
|
||
|
||
@app.on_event("startup") | ||
async def app_startup(): | ||
pass | ||
|
||
|
||
def drop_collection(collection_name: str): | ||
load_collection(collection_name).drop_collection() | ||
|
||
|
||
def load_collection(collection_name: str) -> Milvus: | ||
return Milvus( | ||
embedding_function=CustomEmbeddings(), | ||
collection_name=collection_name, | ||
connection_args={ | ||
"host": MILVUS_HOST, | ||
"port": "19530", | ||
"user": "username", | ||
"password": "password", | ||
}, | ||
index_params={ | ||
"metric_type": "IP", | ||
"index_type": "FLAT", | ||
"params": {"nlist": 16384}, | ||
}, | ||
search_params={"metric_type": "IP", "params": {"nprobe": 32}}, | ||
) | ||
|
||
|
||
@app.post("/add_texts") | ||
async def add_texts_embeddings( | ||
collection_name: str, | ||
texts: List[str], | ||
metadatas: Optional[List[dict]] = None, | ||
): | ||
"""_summary_ | ||
Args: | ||
texts (List[str]): _description_ | ||
connlection_name (str): this should reflect user's random id + the assistant_id they created. | ||
""" | ||
pks = add_texts(collection_name, texts, metadatas) | ||
|
||
|
||
def add_texts( | ||
collection_name: str, | ||
texts: List[str], | ||
metadatas: Optional[List[dict]] = None, | ||
): | ||
c = load_collection(collection_name) | ||
pks = c.add_texts(texts=texts, metadatas=metadatas) | ||
print(pks) | ||
return pks | ||
|
||
|
||
@app.delete("/delete_docs") | ||
async def delete_docs_api(collection_name: str, expr: str): | ||
delete_docs(collection_name, expr) | ||
|
||
|
||
def delete_docs(collection_name: str, expr: str): | ||
c = load_collection(collection_name) | ||
c.delete_entities(expr=expr) | ||
|
||
|
||
def get_top_k_biencoder_match_milvus(query: Query): | ||
c = load_collection(query.collection_name) | ||
|
||
docs = c.similarity_search(query.text, k=query.topk) | ||
res = [] | ||
for i, d in enumerate(docs): | ||
thisd = {"id": i, "metadata": d.metadata, "text": d.page_content} | ||
res.append(thisd) | ||
return res | ||
|
||
|
||
def get_similar_match(query, biencoder_match_method: str, rerank: bool = False): | ||
query_biencoder_matches = get_top_k_biencoder_match_milvus(query) | ||
return query_biencoder_matches[: query.topr] | ||
|
||
|
||
@app.post("/similarity_match") | ||
def text_similarity_match(query: Query): | ||
res = get_similar_match(query, biencoder_match_method="milvus", rerank=query.rerank) | ||
return {"response": res} | ||
|
||
|
||
@app.get("/ping") | ||
def ping(): | ||
return {"response": "Pong!"} |
Oops, something went wrong.