-
Notifications
You must be signed in to change notification settings - Fork 12.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Syntax for precise capturing: impl Trait + use<..>
#125836
Comments
We discussed this in the lang design meeting today: The conclusion of the team is that we'll make For now, we will support at most one such bound in a list of bounds, and semantically we'll only support these bounds in the item bounds of RPIT-like We were interested in later extending this so that it could be used in the bounds on associated types and with For RPITIT (i.e. within trait definitions), we defer to implementation work and to stabilization whether to support it or to leave this work to later, e.g. to the point at which we support Note, if we were later to support multiple If the bounds of the opaque type reference generics that are not present in the We found the idea of this being a bound surprisingly appealing, and people liked that this choice allows for putting Thanks to @joshtriplett for proposing this appealing option. We resolved a difficult choice between two good options by finding an even better one. That's Rust at its best. |
Rework `feature(precise_capturing)` to represent `use<...>` as a syntactical bound Reworks `precise_capturing` for a recent lang-team consensus. Specifically: > The conclusion of the team is that we'll make use<..> a bound. That is, we'll support impl use<..> + Trait, impl Trait + use<..>, etc. > For now, we will support at most one such bound in a list of bounds, and semantically we'll only support these bounds in the item bounds of RPIT-like impl Trait opaque types (i.e., in the places discussed in the RFC). Lang decision in favor of this approach: - rust-lang#125836 (comment) Tracking: - rust-lang#123432
impl use<..> Trait
vs use<..> impl Trait
impl Trait + use<..>
Reopening to formally propose FCP on the above change. I think it is a significant enough delta from the RFC that we would be better off doing an FCP and documenting the rationale now, instead of at stabilization time. This FCP resolves the unresolved question in the RFC about syntax. @rfcbot fcp merge |
Team member @tmandry has proposed to merge this. The next step is review by the rest of the tagged team members: No concerns currently listed. Once a majority of reviewers approve (and at most 2 approvals are outstanding), this will enter its final comment period. If you spot a major issue that hasn't been raised at any point in this process, please speak up! cc @rust-lang/lang-advisors: FCP proposed for lang, please feel free to register concerns. |
I don't know what our official policy is, but @traviscross , would you mind updating the description to reflect the new proposal from #125836 (comment) ? (Or I guess even just making the line of the description be a link to that comment...) |
🔔 This is now entering its final comment period, as per the review above. 🔔 |
Also, I do not necessarily agree with "Note, if we were later to support multiple use<..> items in a list of bounds, that use + use would represent a union, and so use + use would not be equivalent to use<T, U>." ; but I do not see us as committing to a union (vs intersection) path via our FCP here, so I'm willing to check my box and not make this a formal concern here. |
@rfcbot reviewed I concur with @pnkfelix and I specifically want us to leave room for different interpretations of To explain the two options, let's start by defining a conceptual bound One option then is to desugar An alternative option is to have a more complex desugaring where I think the second rule is more intuitive but also brings up mild concerns. Specifically we try to avoid "discontinuities" like this, where having no uses is "different" than having one or more uses. These kind of rules can have composability problems, but in this instance it might be that it's more composable. Unclear. Anyway, we don't have to decide this now, but I do want to leave room for it as a possible future direction (which we may never need). |
I've got one concern with the If we make In Edition 2024, the default is to capture everything in scope. So, However, in Edition 2021 and lower, the default is to capture only some things. How does
Neither is particularly great IMO making
I think the
The list of captures is either automatically inferred (with different rules in <=2021 and >=2024), or explicitly specified with Under this mental model, it makes sense for |
The intuition I'd suggest is that, if a bounds list contains a That is, I'd suggest thinking about it in terms of the |
One additional argument that was raised in the meeting, but never really written out as an example, was the use of trait BufferedIterator<A: Arena> {
type Item<'a>: use<'a>;
fn next<'a>(&'a mut self, a: &'a mut A) -> Self::Item<'a>;
} or in use sites: fn foo(iter: impl BufferedIterator<MyArena, for<'a> Item<'a>: use<'a>>) { ... } Obviously this is a pretty niche and advanced feature, but it seems to make sense conceptually. |
I think this is possibly the strongest argument against |
Rework `feature(precise_capturing)` to represent `use<...>` as a syntactical bound Reworks `precise_capturing` for a recent lang-team consensus. Specifically: > The conclusion of the team is that we'll make use<..> a bound. That is, we'll support impl use<..> + Trait, impl Trait + use<..>, etc. > For now, we will support at most one such bound in a list of bounds, and semantically we'll only support these bounds in the item bounds of RPIT-like impl Trait opaque types (i.e., in the places discussed in the RFC). Lang decision in favor of this approach: - rust-lang/rust#125836 (comment) Tracking: - rust-lang/rust#123432
For unions of |
The final comment period, with a disposition to merge, as per the review above, is now complete. As the automated representative of the governance process, I would like to thank the author for their work and everyone else who contributed. This will be merged soon. |
…=spastorino Stabilize opaque type precise capturing (RFC 3617) This PR partially stabilizes opaque type *precise capturing*, which was specified in [RFC 3617](rust-lang/rfcs#3617), and whose syntax was amended by FCP in [rust-lang#125836](rust-lang#125836). This feature, as stabilized here, gives us a way to explicitly specify the generic lifetime parameters that an RPIT-like opaque type captures. This solves the problem of overcapturing, for lifetime parameters in these opaque types, and will allow the Lifetime Capture Rules 2024 ([RFC 3498](rust-lang/rfcs#3498)) to be fully stabilized for RPIT in Rust 2024. ### What are we stabilizing? This PR stabilizes the use of a `use<'a, T>` bound in return-position impl Trait opaque types. Such a bound fully specifies the set of generic parameters captured by the RPIT opaque type, entirely overriding the implicit default behavior. E.g.: ```rust fn does_not_capture<'a, 'b>() -> impl Sized + use<'a> {} // ~~~~~~~~~~~~~~~~~~~~ // This RPIT opaque type does not capture `'b`. ``` The way we would suggest thinking of `impl Trait` types *without* an explicit `use<..>` bound is that the `use<..>` bound has been *elided*, and that the bound is filled in automatically by the compiler according to the edition-specific capture rules. All non-`'static` lifetime parameters, named (i.e. non-APIT) type parameters, and const parameters in scope are valid to name, including an elided lifetime if such a lifetime would also be valid in an outlives bound, e.g.: ```rust fn elided(x: &u8) -> impl Sized + use<'_> { x } ``` Lifetimes must be listed before type and const parameters, but otherwise the ordering is not relevant to the `use<..>` bound. Captured parameters may not be duplicated. For now, only one `use<..>` bound may appear in a bounds list. It may appear anywhere within the bounds list. ### How does this differ from the RFC? This stabilization differs from the RFC in one respect: the RFC originally specified `use<'a, T>` as syntactically part of the RPIT type itself, e.g.: ```rust fn capture<'a>() -> impl use<'a> Sized {} ``` However, settling on the final syntax was left as an open question. T-lang later decided via FCP in [rust-lang#125836](rust-lang#125836) to treat `use<..>` as a syntactic bound instead, e.g.: ```rust fn capture<'a>() -> impl Sized + use<'a> {} ``` ### What aren't we stabilizing? The key goal of this PR is to stabilize the parts of *precise capturing* that are needed to enable the migration to Rust 2024. There are some capabilities of *precise capturing* that the RFC specifies but that we're not stabilizing here, as these require further work on the type system. We hope to lift these limitations later. The limitations that are part of this PR were specified in the [RFC's stabilization strategy](https://rust-lang.github.io/rfcs/3617-precise-capturing.html#stabilization-strategy). #### Not capturing type or const parameters The RFC addresses the overcapturing of type and const parameters; that is, it allows for them to not be captured in opaque types. We're not stabilizing that in this PR. Since all in scope generic type and const parameters are implicitly captured in all editions, this is not needed for the migration to Rust 2024. For now, when using `use<..>`, all in scope type and const parameters must be nameable (i.e., APIT cannot be used) and included as arguments. For example, this is an error because `T` is in scope and not included as an argument: ```rust fn test<T>() -> impl Sized + use<> {} //~^ ERROR `impl Trait` must mention all type parameters in scope in `use<...>` ``` This is due to certain current limitations in the type system related to how generic parameters are represented as captured (i.e. bivariance) and how inference operates. We hope to relax this in the future, and this stabilization is forward compatible with doing so. #### Precise capturing for return-position impl Trait **in trait** (RPITIT) The RFC specifies precise capturing for RPITIT. We're not stabilizing that in this PR. Since RPITIT already adheres to the Lifetime Capture Rules 2024, this isn't needed for the migration to Rust 2024. The effect of this is that the anonymous associated types created by RPITITs must continue to capture all of the lifetime parameters in scope, e.g.: ```rust trait Foo<'a> { fn test() -> impl Sized + use<Self>; //~^ ERROR `use<...>` precise capturing syntax is currently not allowed in return-position `impl Trait` in traits } ``` To allow this involves a meaningful amount of type system work related to adding variance to GATs or reworking how generics are represented in RPITITs. We plan to do this work separately from the stabilization. See: - rust-lang#124029 Supporting precise capturing for RPITIT will also require us to implement a new algorithm for detecting refining capture behavior. This may involve looking through type parameters to detect cases where the impl Trait type in an implementation captures fewer lifetimes than the corresponding RPITIT in the trait definition, e.g.: ```rust trait Foo { fn rpit() -> impl Sized + use<Self>; } impl<'a> Foo for &'a () { // This is "refining" due to not capturing `'a` which // is implied by the trait's `use<Self>`. fn rpit() -> impl Sized + use<>; // This is not "refining". fn rpit() -> impl Sized + use<'a>; } ``` This stabilization is forward compatible with adding support for this later. ### The technical details This bound is purely syntactical and does not lower to a [`Clause`](https://doc.rust-lang.org/1.79.0/nightly-rustc/rustc_middle/ty/type.ClauseKind.html) in the type system. For the purposes of the type system (and for the types team's curiosity regarding this stabilization), we have no current need to represent this as a `ClauseKind`. Since opaques already capture a variable set of lifetimes depending on edition and their syntactical position (e.g. RPIT vs RPITIT), a `use<..>` bound is just a way to explicitly rather than implicitly specify that set of lifetimes, and this only affects opaque type lowering from AST to HIR. ### FCP plan While there's much discussion of the type system here, the feature in this PR is implemented internally as a transformation that happens before lowering to the type system layer. We already support impl Trait types partially capturing the in scope lifetimes; we just currently only expose that implicitly. So, in my (errs's) view as a types team member, there's nothing for types to weigh in on here with respect to the implementation being stabilized, and I'd suggest a lang-only proposed FCP (though we'll of course CC the team below). ### Authorship and acknowledgments This stabilization report was coauthored by compiler-errors and TC. TC would like to acknowledge the outstanding and speedy work that compiler-errors has done to make this feature happen. compiler-errors thanks TC for authoring the RFC, for all of his involvement in this feature's development, and pushing the Rust 2024 edition forward. ### Open items We're doing some things in parallel here. In signaling the intention to stabilize, we want to uncover any latent issues so we can be sure they get addressed. We want to give the maximum time for discussion here to happen by starting it while other remaining miscellaneous work proceeds. That work includes: - [x] Look into `syn` support. - dtolnay/syn#1677 - dtolnay/syn#1707 - [x] Look into `rustfmt` support. - rust-lang#126754 - [x] Look into `rust-analyzer` support. - rust-lang/rust-analyzer#17598 - rust-lang/rust-analyzer#17676 - [x] Look into `rustdoc` support. - rust-lang#127228 - rust-lang#127632 - rust-lang#127658 - [x] Suggest this feature to RfL (a known nightly user). - [x] Add a chapter to the edition guide. - rust-lang/edition-guide#316 - [x] Update the Reference. - rust-lang/reference#1577 ### (Selected) implementation history * rust-lang/rfcs#3498 * rust-lang/rfcs#3617 * rust-lang#123468 * rust-lang#125836 * rust-lang#126049 * rust-lang#126753 Closes rust-lang#123432. cc `@rust-lang/lang` `@rust-lang/types` `@rustbot` labels +T-lang +I-lang-nominated +A-impl-trait +F-precise_capturing Tracking: - rust-lang#123432 ---- For the compiler reviewer, I'll leave some inline comments about diagnostics fallout :^) r? compiler
…=spastorino Stabilize opaque type precise capturing (RFC 3617) This PR partially stabilizes opaque type *precise capturing*, which was specified in [RFC 3617](rust-lang/rfcs#3617), and whose syntax was amended by FCP in [rust-lang#125836](rust-lang#125836). This feature, as stabilized here, gives us a way to explicitly specify the generic lifetime parameters that an RPIT-like opaque type captures. This solves the problem of overcapturing, for lifetime parameters in these opaque types, and will allow the Lifetime Capture Rules 2024 ([RFC 3498](rust-lang/rfcs#3498)) to be fully stabilized for RPIT in Rust 2024. ### What are we stabilizing? This PR stabilizes the use of a `use<'a, T>` bound in return-position impl Trait opaque types. Such a bound fully specifies the set of generic parameters captured by the RPIT opaque type, entirely overriding the implicit default behavior. E.g.: ```rust fn does_not_capture<'a, 'b>() -> impl Sized + use<'a> {} // ~~~~~~~~~~~~~~~~~~~~ // This RPIT opaque type does not capture `'b`. ``` The way we would suggest thinking of `impl Trait` types *without* an explicit `use<..>` bound is that the `use<..>` bound has been *elided*, and that the bound is filled in automatically by the compiler according to the edition-specific capture rules. All non-`'static` lifetime parameters, named (i.e. non-APIT) type parameters, and const parameters in scope are valid to name, including an elided lifetime if such a lifetime would also be valid in an outlives bound, e.g.: ```rust fn elided(x: &u8) -> impl Sized + use<'_> { x } ``` Lifetimes must be listed before type and const parameters, but otherwise the ordering is not relevant to the `use<..>` bound. Captured parameters may not be duplicated. For now, only one `use<..>` bound may appear in a bounds list. It may appear anywhere within the bounds list. ### How does this differ from the RFC? This stabilization differs from the RFC in one respect: the RFC originally specified `use<'a, T>` as syntactically part of the RPIT type itself, e.g.: ```rust fn capture<'a>() -> impl use<'a> Sized {} ``` However, settling on the final syntax was left as an open question. T-lang later decided via FCP in [rust-lang#125836](rust-lang#125836) to treat `use<..>` as a syntactic bound instead, e.g.: ```rust fn capture<'a>() -> impl Sized + use<'a> {} ``` ### What aren't we stabilizing? The key goal of this PR is to stabilize the parts of *precise capturing* that are needed to enable the migration to Rust 2024. There are some capabilities of *precise capturing* that the RFC specifies but that we're not stabilizing here, as these require further work on the type system. We hope to lift these limitations later. The limitations that are part of this PR were specified in the [RFC's stabilization strategy](https://rust-lang.github.io/rfcs/3617-precise-capturing.html#stabilization-strategy). #### Not capturing type or const parameters The RFC addresses the overcapturing of type and const parameters; that is, it allows for them to not be captured in opaque types. We're not stabilizing that in this PR. Since all in scope generic type and const parameters are implicitly captured in all editions, this is not needed for the migration to Rust 2024. For now, when using `use<..>`, all in scope type and const parameters must be nameable (i.e., APIT cannot be used) and included as arguments. For example, this is an error because `T` is in scope and not included as an argument: ```rust fn test<T>() -> impl Sized + use<> {} //~^ ERROR `impl Trait` must mention all type parameters in scope in `use<...>` ``` This is due to certain current limitations in the type system related to how generic parameters are represented as captured (i.e. bivariance) and how inference operates. We hope to relax this in the future, and this stabilization is forward compatible with doing so. #### Precise capturing for return-position impl Trait **in trait** (RPITIT) The RFC specifies precise capturing for RPITIT. We're not stabilizing that in this PR. Since RPITIT already adheres to the Lifetime Capture Rules 2024, this isn't needed for the migration to Rust 2024. The effect of this is that the anonymous associated types created by RPITITs must continue to capture all of the lifetime parameters in scope, e.g.: ```rust trait Foo<'a> { fn test() -> impl Sized + use<Self>; //~^ ERROR `use<...>` precise capturing syntax is currently not allowed in return-position `impl Trait` in traits } ``` To allow this involves a meaningful amount of type system work related to adding variance to GATs or reworking how generics are represented in RPITITs. We plan to do this work separately from the stabilization. See: - rust-lang#124029 Supporting precise capturing for RPITIT will also require us to implement a new algorithm for detecting refining capture behavior. This may involve looking through type parameters to detect cases where the impl Trait type in an implementation captures fewer lifetimes than the corresponding RPITIT in the trait definition, e.g.: ```rust trait Foo { fn rpit() -> impl Sized + use<Self>; } impl<'a> Foo for &'a () { // This is "refining" due to not capturing `'a` which // is implied by the trait's `use<Self>`. fn rpit() -> impl Sized + use<>; // This is not "refining". fn rpit() -> impl Sized + use<'a>; } ``` This stabilization is forward compatible with adding support for this later. ### The technical details This bound is purely syntactical and does not lower to a [`Clause`](https://doc.rust-lang.org/1.79.0/nightly-rustc/rustc_middle/ty/type.ClauseKind.html) in the type system. For the purposes of the type system (and for the types team's curiosity regarding this stabilization), we have no current need to represent this as a `ClauseKind`. Since opaques already capture a variable set of lifetimes depending on edition and their syntactical position (e.g. RPIT vs RPITIT), a `use<..>` bound is just a way to explicitly rather than implicitly specify that set of lifetimes, and this only affects opaque type lowering from AST to HIR. ### FCP plan While there's much discussion of the type system here, the feature in this PR is implemented internally as a transformation that happens before lowering to the type system layer. We already support impl Trait types partially capturing the in scope lifetimes; we just currently only expose that implicitly. So, in my (errs's) view as a types team member, there's nothing for types to weigh in on here with respect to the implementation being stabilized, and I'd suggest a lang-only proposed FCP (though we'll of course CC the team below). ### Authorship and acknowledgments This stabilization report was coauthored by compiler-errors and TC. TC would like to acknowledge the outstanding and speedy work that compiler-errors has done to make this feature happen. compiler-errors thanks TC for authoring the RFC, for all of his involvement in this feature's development, and pushing the Rust 2024 edition forward. ### Open items We're doing some things in parallel here. In signaling the intention to stabilize, we want to uncover any latent issues so we can be sure they get addressed. We want to give the maximum time for discussion here to happen by starting it while other remaining miscellaneous work proceeds. That work includes: - [x] Look into `syn` support. - dtolnay/syn#1677 - dtolnay/syn#1707 - [x] Look into `rustfmt` support. - rust-lang#126754 - [x] Look into `rust-analyzer` support. - rust-lang/rust-analyzer#17598 - rust-lang/rust-analyzer#17676 - [x] Look into `rustdoc` support. - rust-lang#127228 - rust-lang#127632 - rust-lang#127658 - [x] Suggest this feature to RfL (a known nightly user). - [x] Add a chapter to the edition guide. - rust-lang/edition-guide#316 - [x] Update the Reference. - rust-lang/reference#1577 ### (Selected) implementation history * rust-lang/rfcs#3498 * rust-lang/rfcs#3617 * rust-lang#123468 * rust-lang#125836 * rust-lang#126049 * rust-lang#126753 Closes rust-lang#123432. cc `@rust-lang/lang` `@rust-lang/types` `@rustbot` labels +T-lang +I-lang-nominated +A-impl-trait +F-precise_capturing Tracking: - rust-lang#123432 ---- For the compiler reviewer, I'll leave some inline comments about diagnostics fallout :^) r? compiler
Stabilize opaque type precise capturing (RFC 3617) This PR partially stabilizes opaque type *precise capturing*, which was specified in [RFC 3617](rust-lang/rfcs#3617), and whose syntax was amended by FCP in [#125836](rust-lang/rust#125836). This feature, as stabilized here, gives us a way to explicitly specify the generic lifetime parameters that an RPIT-like opaque type captures. This solves the problem of overcapturing, for lifetime parameters in these opaque types, and will allow the Lifetime Capture Rules 2024 ([RFC 3498](rust-lang/rfcs#3498)) to be fully stabilized for RPIT in Rust 2024. ### What are we stabilizing? This PR stabilizes the use of a `use<'a, T>` bound in return-position impl Trait opaque types. Such a bound fully specifies the set of generic parameters captured by the RPIT opaque type, entirely overriding the implicit default behavior. E.g.: ```rust fn does_not_capture<'a, 'b>() -> impl Sized + use<'a> {} // ~~~~~~~~~~~~~~~~~~~~ // This RPIT opaque type does not capture `'b`. ``` The way we would suggest thinking of `impl Trait` types *without* an explicit `use<..>` bound is that the `use<..>` bound has been *elided*, and that the bound is filled in automatically by the compiler according to the edition-specific capture rules. All non-`'static` lifetime parameters, named (i.e. non-APIT) type parameters, and const parameters in scope are valid to name, including an elided lifetime if such a lifetime would also be valid in an outlives bound, e.g.: ```rust fn elided(x: &u8) -> impl Sized + use<'_> { x } ``` Lifetimes must be listed before type and const parameters, but otherwise the ordering is not relevant to the `use<..>` bound. Captured parameters may not be duplicated. For now, only one `use<..>` bound may appear in a bounds list. It may appear anywhere within the bounds list. ### How does this differ from the RFC? This stabilization differs from the RFC in one respect: the RFC originally specified `use<'a, T>` as syntactically part of the RPIT type itself, e.g.: ```rust fn capture<'a>() -> impl use<'a> Sized {} ``` However, settling on the final syntax was left as an open question. T-lang later decided via FCP in [#125836](rust-lang/rust#125836) to treat `use<..>` as a syntactic bound instead, e.g.: ```rust fn capture<'a>() -> impl Sized + use<'a> {} ``` ### What aren't we stabilizing? The key goal of this PR is to stabilize the parts of *precise capturing* that are needed to enable the migration to Rust 2024. There are some capabilities of *precise capturing* that the RFC specifies but that we're not stabilizing here, as these require further work on the type system. We hope to lift these limitations later. The limitations that are part of this PR were specified in the [RFC's stabilization strategy](https://rust-lang.github.io/rfcs/3617-precise-capturing.html#stabilization-strategy). #### Not capturing type or const parameters The RFC addresses the overcapturing of type and const parameters; that is, it allows for them to not be captured in opaque types. We're not stabilizing that in this PR. Since all in scope generic type and const parameters are implicitly captured in all editions, this is not needed for the migration to Rust 2024. For now, when using `use<..>`, all in scope type and const parameters must be nameable (i.e., APIT cannot be used) and included as arguments. For example, this is an error because `T` is in scope and not included as an argument: ```rust fn test<T>() -> impl Sized + use<> {} //~^ ERROR `impl Trait` must mention all type parameters in scope in `use<...>` ``` This is due to certain current limitations in the type system related to how generic parameters are represented as captured (i.e. bivariance) and how inference operates. We hope to relax this in the future, and this stabilization is forward compatible with doing so. #### Precise capturing for return-position impl Trait **in trait** (RPITIT) The RFC specifies precise capturing for RPITIT. We're not stabilizing that in this PR. Since RPITIT already adheres to the Lifetime Capture Rules 2024, this isn't needed for the migration to Rust 2024. The effect of this is that the anonymous associated types created by RPITITs must continue to capture all of the lifetime parameters in scope, e.g.: ```rust trait Foo<'a> { fn test() -> impl Sized + use<Self>; //~^ ERROR `use<...>` precise capturing syntax is currently not allowed in return-position `impl Trait` in traits } ``` To allow this involves a meaningful amount of type system work related to adding variance to GATs or reworking how generics are represented in RPITITs. We plan to do this work separately from the stabilization. See: - rust-lang/rust#124029 Supporting precise capturing for RPITIT will also require us to implement a new algorithm for detecting refining capture behavior. This may involve looking through type parameters to detect cases where the impl Trait type in an implementation captures fewer lifetimes than the corresponding RPITIT in the trait definition, e.g.: ```rust trait Foo { fn rpit() -> impl Sized + use<Self>; } impl<'a> Foo for &'a () { // This is "refining" due to not capturing `'a` which // is implied by the trait's `use<Self>`. fn rpit() -> impl Sized + use<>; // This is not "refining". fn rpit() -> impl Sized + use<'a>; } ``` This stabilization is forward compatible with adding support for this later. ### The technical details This bound is purely syntactical and does not lower to a [`Clause`](https://doc.rust-lang.org/1.79.0/nightly-rustc/rustc_middle/ty/type.ClauseKind.html) in the type system. For the purposes of the type system (and for the types team's curiosity regarding this stabilization), we have no current need to represent this as a `ClauseKind`. Since opaques already capture a variable set of lifetimes depending on edition and their syntactical position (e.g. RPIT vs RPITIT), a `use<..>` bound is just a way to explicitly rather than implicitly specify that set of lifetimes, and this only affects opaque type lowering from AST to HIR. ### FCP plan While there's much discussion of the type system here, the feature in this PR is implemented internally as a transformation that happens before lowering to the type system layer. We already support impl Trait types partially capturing the in scope lifetimes; we just currently only expose that implicitly. So, in my (errs's) view as a types team member, there's nothing for types to weigh in on here with respect to the implementation being stabilized, and I'd suggest a lang-only proposed FCP (though we'll of course CC the team below). ### Authorship and acknowledgments This stabilization report was coauthored by compiler-errors and TC. TC would like to acknowledge the outstanding and speedy work that compiler-errors has done to make this feature happen. compiler-errors thanks TC for authoring the RFC, for all of his involvement in this feature's development, and pushing the Rust 2024 edition forward. ### Open items We're doing some things in parallel here. In signaling the intention to stabilize, we want to uncover any latent issues so we can be sure they get addressed. We want to give the maximum time for discussion here to happen by starting it while other remaining miscellaneous work proceeds. That work includes: - [x] Look into `syn` support. - dtolnay/syn#1677 - dtolnay/syn#1707 - [x] Look into `rustfmt` support. - rust-lang/rust#126754 - [x] Look into `rust-analyzer` support. - rust-lang/rust-analyzer#17598 - rust-lang/rust-analyzer#17676 - [x] Look into `rustdoc` support. - rust-lang/rust#127228 - rust-lang/rust#127632 - rust-lang/rust#127658 - [x] Suggest this feature to RfL (a known nightly user). - [x] Add a chapter to the edition guide. - rust-lang/edition-guide#316 - [x] Update the Reference. - rust-lang/reference#1577 ### (Selected) implementation history * rust-lang/rfcs#3498 * rust-lang/rfcs#3617 * rust-lang/rust#123468 * rust-lang/rust#125836 * rust-lang/rust#126049 * rust-lang/rust#126753 Closes #123432. cc `@rust-lang/lang` `@rust-lang/types` `@rustbot` labels +T-lang +I-lang-nominated +A-impl-trait +F-precise_capturing Tracking: - rust-lang/rust#123432 ---- For the compiler reviewer, I'll leave some inline comments about diagnostics fallout :^) r? compiler
A flavor of bound that loosens restrictions and cannot be mentioned more than once is not unprecedented. // Compiles (no warning)
fn example0<'a>() -> &'a (impl Debug + ?Sized) {
""
}
// Compiles (warning: relaxing a default bound only does something for `?Sized`)
fn example1<'a>() -> &'a (impl Debug + ?Display) {
&0
}
// Fails: error[E0203]: type parameter has more than one relaxed default bound,
// only one is supported
fn example2<'a>() -> &'a (impl Debug + ?Display + ?Sized) {
""
} |
I'm not sure if anyone has raised this, but maybe this error reporting could be improved to also say "consider adding error[E0502]: cannot borrow `data` as mutable because it is also borrowed as immutable
--> src/main.rs:6:5
|
5 | let mut i = indices(&data);
| ----- immutable borrow occurs here
6 | data.push(4);
| ^^^^^^^^^^^^ mutable borrow occurs here
7 | i.next();
| - immutable borrow later used here Instead, error[E0502]: cannot borrow `data` as mutable because it is also borrowed as immutable
--> src/main.rs:6:5
|
5 | let mut i = indices(&data);
| ----- immutable borrow occurs here
6 | data.push(4);
| ^^^^^^^^^^^^ mutable borrow occurs here
7 | i.next();
| - immutable borrow later used here
10 | fn indices<T>(
11 | slice: &[T],
12 | ) -> impl Iterator<Item = usize> + use<> {
| ----- `impl Trait` must mention all type parameters in scope in `use<...>` |
For precise capturing (#123432), we need to decide which syntax to adopt.
The original two, left as an open question in the RFC, were:
impl use<..> Trait
use<..> impl Trait
(See the alternatives section in the RFC for a detailed comparative analysis of these options. In particular, so as to reduce duplication, please read that section carefully before commenting here.)
However, in the design meeting on 2024-06-05, as described below, we settled on placing
use<..>
within the list of bounds, e.g.:This issue is to track the resolution of the open question on syntax left in the RFC.
Tracking:
precise_capturing
syntax #123432The text was updated successfully, but these errors were encountered: