-
Notifications
You must be signed in to change notification settings - Fork 13.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Forbid disabling SSE on x86 targets that have SSE in their "baseline" #133611
Comments
…s, r=workingjubilee Add a notion of "some ABIs require certain target features" I think I finally found the right shape for the data and checks that I recently added in rust-lang#133099, rust-lang#133417, rust-lang#134337: we have a notion of "this ABI requires the following list of target features, and it is incompatible with the following list of target features". Both `-Ctarget-feature` and `#[target_feature]` are updated to ensure we follow the rules of the ABI. This removes all the "toggleability" stuff introduced before, though we do keep the notion of a fully "forbidden" target feature -- this is needed to deal with target features that are actual ABI switches, and hence are needed to even compute the list of required target features. We always explicitly (un)set all required and in-conflict features, just to avoid potential trouble caused by the default features of whatever the base CPU is. We do this *before* applying `-Ctarget-feature` to maintain backward compatibility; this poses a slight risk of missing some implicit feature dependencies in LLVM but has the advantage of not breaking users that deliberately toggle ABI-relevant target features. They get a warning but the feature does get toggled the way they requested. For now, our logic supports x86, ARM, and RISC-V (just like the previous logic did). Unsurprisingly, RISC-V is the nicest. ;) As a side-effect this also (unstably) allows *enabling* `x87` when that is harmless. I used the opportunity to mark SSE2 as required on x86-64, to better match the actual logic in LLVM and because all x86-64 chips do have SSE2. This infrastructure also prepares us for requiring SSE on x86-32 when we want to use that for our ABI (and for float semantics sanity), see rust-lang#133611, but no such change is happening in this PR. r? `@workingjubilee`
With #134794 there would be a fairly straight-forward way to implement this: add a way for a target to explicitly request a "hardfloat-with-sse" ABI (I am imagining a new If we do that, setting |
…ingjubilee Add a notion of "some ABIs require certain target features" I think I finally found the right shape for the data and checks that I recently added in rust-lang/rust#133099, rust-lang/rust#133417, rust-lang/rust#134337: we have a notion of "this ABI requires the following list of target features, and it is incompatible with the following list of target features". Both `-Ctarget-feature` and `#[target_feature]` are updated to ensure we follow the rules of the ABI. This removes all the "toggleability" stuff introduced before, though we do keep the notion of a fully "forbidden" target feature -- this is needed to deal with target features that are actual ABI switches, and hence are needed to even compute the list of required target features. We always explicitly (un)set all required and in-conflict features, just to avoid potential trouble caused by the default features of whatever the base CPU is. We do this *before* applying `-Ctarget-feature` to maintain backward compatibility; this poses a slight risk of missing some implicit feature dependencies in LLVM but has the advantage of not breaking users that deliberately toggle ABI-relevant target features. They get a warning but the feature does get toggled the way they requested. For now, our logic supports x86, ARM, and RISC-V (just like the previous logic did). Unsurprisingly, RISC-V is the nicest. ;) As a side-effect this also (unstably) allows *enabling* `x87` when that is harmless. I used the opportunity to mark SSE2 as required on x86-64, to better match the actual logic in LLVM and because all x86-64 chips do have SSE2. This infrastructure also prepares us for requiring SSE on x86-32 when we want to use that for our ABI (and for float semantics sanity), see rust-lang/rust#133611, but no such change is happening in this PR. r? `@workingjubilee`
…ingjubilee Add a notion of "some ABIs require certain target features" I think I finally found the right shape for the data and checks that I recently added in rust-lang/rust#133099, rust-lang/rust#133417, rust-lang/rust#134337: we have a notion of "this ABI requires the following list of target features, and it is incompatible with the following list of target features". Both `-Ctarget-feature` and `#[target_feature]` are updated to ensure we follow the rules of the ABI. This removes all the "toggleability" stuff introduced before, though we do keep the notion of a fully "forbidden" target feature -- this is needed to deal with target features that are actual ABI switches, and hence are needed to even compute the list of required target features. We always explicitly (un)set all required and in-conflict features, just to avoid potential trouble caused by the default features of whatever the base CPU is. We do this *before* applying `-Ctarget-feature` to maintain backward compatibility; this poses a slight risk of missing some implicit feature dependencies in LLVM but has the advantage of not breaking users that deliberately toggle ABI-relevant target features. They get a warning but the feature does get toggled the way they requested. For now, our logic supports x86, ARM, and RISC-V (just like the previous logic did). Unsurprisingly, RISC-V is the nicest. ;) As a side-effect this also (unstably) allows *enabling* `x87` when that is harmless. I used the opportunity to mark SSE2 as required on x86-64, to better match the actual logic in LLVM and because all x86-64 chips do have SSE2. This infrastructure also prepares us for requiring SSE on x86-32 when we want to use that for our ABI (and for float semantics sanity), see rust-lang/rust#133611, but no such change is happening in this PR. r? `@workingjubilee`
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
add x86-sse2 (32bit) ABI that requires SSE2 target feature This is the first commit of rust-lang#135408: The primary goal of this is to make SSE2 required for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but it is the easiest way to make a target feature required via the target spec. In a follow-up change (rust-lang#135408), we can actually make use of SSE2 for the ABI, but that is running into some infrastructure issues. r? `@workingjubilee` try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
add x86-sse2 (32bit) ABI that requires SSE2 target feature This is the first commit of rust-lang#135408: The primary goal of this is to make SSE2 required for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but it is the easiest way to make a target feature required via the target spec. In a follow-up change (rust-lang#135408), we can actually make use of SSE2 for the ABI, but that is running into some infrastructure issues. r? `@workingjubilee` try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
add x86-sse2 (32bit) ABI that requires SSE2 target feature This is the first commit of rust-lang#135408: The primary goal of this is to make SSE2 required for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but it is the easiest way to make a target feature required via the target spec. In a follow-up change (rust-lang#135408), we can actually make use of SSE2 for the ABI, but that is running into some infrastructure issues. r? `@workingjubilee` try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
add x86-sse2 (32bit) ABI that requires SSE2 target feature This is the first commit of rust-lang#135408: The primary goal of this is to make SSE2 required for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but it is the easiest way to make a target feature required via the target spec. In a follow-up change (rust-lang#135408), we can actually make use of SSE2 for the ABI, but that is running into some infrastructure issues. r? `@workingjubilee` try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
…bilee add x86-sse2 (32bit) ABI that requires SSE2 target feature This is the first commit of rust-lang#135408: The primary goal of this is to make SSE2 required for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but it is the easiest way to make a target feature required via the target spec. In a follow-up change (rust-lang#135408), we can actually make use of SSE2 for the ABI, but that is running into some infrastructure issues. r? `@workingjubilee` try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
Rollup merge of rust-lang#137037 - RalfJung:x86-sse2-abi, r=workingjubilee add x86-sse2 (32bit) ABI that requires SSE2 target feature This is the first commit of rust-lang#135408: The primary goal of this is to make SSE2 required for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but it is the easiest way to make a target feature required via the target spec. In a follow-up change (rust-lang#135408), we can actually make use of SSE2 for the ABI, but that is running into some infrastructure issues. r? `@workingjubilee` try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
add x86-sse2 (32bit) ABI that requires SSE2 target feature This is the first commit of rust-lang/rust#135408: The primary goal of this is to make SSE2 required for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang/rust#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang/rust#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but it is the easiest way to make a target feature required via the target spec. In a follow-up change (rust-lang/rust#135408), we can actually make use of SSE2 for the ABI, but that is running into some infrastructure issues. r? `@workingjubilee` try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
x86: make SSE2 required for i686 hardfloat targets and use it to pass SIMD types The primary goal of this is to make SSE2 *required* for our i686 targets (at least for the ones that use Pentium 4 as their baseline), to ensure they cannot be affected by rust-lang#114479. This has been MCPd in rust-lang/compiler-team#808, and is tracked in rust-lang#133611. We do this by defining a new ABI that these targets select, and making SSE2 required by the ABI (that's the first commit). That's kind of a hack, but (a) it is the easiest way to make a target feature required via the target spec, and (b) we actually *can* use SSE2 for the Rust ABI now that it is required, so the second commit goes ahead and does that. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl
x86: use SSE2 to pass float and SIMD types This builds on the new X86Sse2 ABI landed in rust-lang#137037 to actually make it a separate ABI from the default x86 ABI, and use SSE2 registers. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl try-job: x86_64-msvc-1
x86: use SSE2 to pass float and SIMD types This builds on the new X86Sse2 ABI landed in rust-lang#137037 to actually make it a separate ABI from the default x86 ABI, and use SSE2 registers. Specifically, we use it in two ways: to return `f64` values in a register rather than by-ptr, and to pass vectors of size up to 128bit in a register (or, well, whatever LLVM does when passing `<4 x float>` by-val, I don't actually know if this ends up in a register). Cc `@workingjubilee` Fixes rust-lang#133611 try-job: aarch64-apple try-job: aarch64-gnu try-job: aarch64-gnu-debug try-job: test-various try-job: x86_64-gnu-nopt try-job: dist-i586-gnu-i586-i686-musl try-job: x86_64-msvc-1
Passing
-Ctarget-feature=-sse
on an x86-64 target currently produces an ugly LLVM error.Doing the same on a x86-32 target leads to unsound floating-point behavior.
Therefore, I think we should deprecate and eventually fully forbid toggling the
sse
/sse2
target features on x86 targets, except for those targets that do not have these features to begin with (e.g.i586-unknown-linux-gnu
).I am implementing some machinery here that could help with that, but properly implementing this will be tricky since one can also use
-Ctarget-cpu
to disable these target features.Once this is implemented, we have some options for improving the Rust ABI on these targets as well:
PassMode::Indirect
Here, compiler team triage decided "Current Tier 1 x86 targets require SSE-based floats at minimum". The concrete proposal above got MCP'd in rust-lang/compiler-team#808.
Open questions
How do we best implement this? It's non trivial since
-Ctarget-cpu
can alter thesse
/sse2
feature gates, so our usual approach of just checking which target features got toggled with-Ctarget-feature
does not work.To make things worse, the way we control whether
sse
/sse2
is available in the "basline" is via thebase.cpu
field, not via the explicit list of target features, so if we want to do things "only if the baseline has SSE", that's non-trivial to implement. Maybe we should just add abool
field to the target spec that directly controls "use SSE registers for Rust ABI" or "requires SSE registers" or so?Cc @bjorn3 @workingjubilee @Amanieu
The text was updated successfully, but these errors were encountered: