-
Notifications
You must be signed in to change notification settings - Fork 12.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Tracking Issue for inline const patterns (RFC 2920) #76001
Comments
With regard to the lint, is there any semantic difference between the two? Intuitively I would expect them to behave identically (static lifetimes). |
They behave identically. The point of the lint is to have a single "idiomatic" form.
The issue title calls it "const expressons" so maybe that should also be on the list. I prefer "inline const" because it emphasizes that this is a totally separate body of code that is just written inline. That's much more like a closure than normal blocks. Also, is anyone up for implementing this? (I can't even mentor this I am afraid, this affects surface-level syntax and MIR building which is way outside what I know.^^) |
"const block" is clearly correct. it matches "unsafe block" that way. |
That false parallel with "unsafe block" is exactly why it is not correct. An unsafe block inherits scope, execution environment, everything from its parent block. An inline const does not. |
I'm happy to mentor, although by no means am I an expert on all the parts of the compiler you'll need to touch. There's already an If no one volunteers in the next few weeks, I'll try to set aside a day or two to implement this. However, I'm mostly in maintenance/review mode as far as Rust is concerned. |
Does Hm... I need to fix my computer still. Guess I have a good reason today. |
It can be a useful comparison when introducing C++ users to Rust's
There are no mentions of |
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
@ecstatic-morse I'd like to take this issue if it's not taken yet. |
Go for it @spastorino! |
I forgot to link this issue from the PR but the PR is now merged #77124 |
I would like to write the documentation. |
@camelid please once you have something up cc me so I can review. |
…t-pat, r=compiler-errors `#![feature(inline_const_pat)]` is no longer incomplete Now that borrow checking and safety checking is implemented for inline constant patterns, the incomplete feature status is not necessary. Stabilizing this feature requires more testing and has some of the same unresolved questions as inline constants. cc rust-lang#76001
…t-pat, r=compiler-errors `#![feature(inline_const_pat)]` is no longer incomplete Now that borrow checking and safety checking is implemented for inline constant patterns, the incomplete feature status is not necessary. Stabilizing this feature requires more testing and has some of the same unresolved questions as inline constants. cc rust-lang#76001
…t-pat, r=compiler-errors `#![feature(inline_const_pat)]` is no longer incomplete Now that borrow checking and safety checking is implemented for inline constant patterns, the incomplete feature status is not necessary. Stabilizing this feature requires more testing and has some of the same unresolved questions as inline constants. cc rust-lang#76001
Rollup merge of rust-lang#120547 - matthewjasper:complete-inline-const-pat, r=compiler-errors `#![feature(inline_const_pat)]` is no longer incomplete Now that borrow checking and safety checking is implemented for inline constant patterns, the incomplete feature status is not necessary. Stabilizing this feature requires more testing and has some of the same unresolved questions as inline constants. cc rust-lang#76001
Something I hope we can consider before stabilization (and don't think has been mentioned prior): should we reserve/disallow
I entirely don't mind not reserving/disallowing the syntax; I just want some confidence lang is aware of potential future extension around this. Footnotes
|
So basically you are saying It also seems potentially problematic for macros, where if I write OTOH if it can be made to work, I do see the appeal of A prototype intrinsic for this would look more like
I would say that "pitfall" is the only sensible behavior.
It's a bit more subtle than that due to non-determinism. Floats do not provide a way that code can reliably test for compiletime vs runtime evaluation. |
That sounds like the implementation detail of rust-lang/rfcs#3582 or #85836? If we have any construct that allows us to do a partial mono we will have the same issue.
I think the argument is to only reserve, syntactically, There's already precedent in the standard library where in |
Yes. That RFC has the risk of being a major pain for all future MIR work. But that's probably off-topic here.
No, that's just about doing less codegen, but not about evaluating fewer consts during monomorphization. |
Stabilise inline_const # Stabilisation Report ## Summary This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised. The feature will allow code like this: ```rust foo(const { 1 + 1 }) ``` which is roughly desugared into ```rust struct Foo; impl Foo { const FOO: i32 = 1 + 1; } foo(Foo::FOO) ``` This feature is from rust-lang/rfcs#2920 and is tracked in rust-lang#76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in rust-lang#77124. ## Difference from RFC There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. rust-lang#89964). The inference is implemented in rust-lang#89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body. This allows code like: ```rust let v: Vec<i32> = const { Vec::new() }; ``` Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in rust-lang#96557. This allows code like: ```rust fn create_none_array<T, const N: usize>() -> [Option<T>; N] { [const { None::<T> }; N] } ``` This enhancement also makes inline const usable as static asserts: ```rust fn require_zst<T>() { const { assert!(std::mem::size_of::<T>() == 0) } } ``` ## Documentation Reference: rust-lang/reference#1295 ## Unresolved issues We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation: * expr fragment specifier issue: rust-lang#86730 * ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~ ## Tests There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
Stabilise inline_const # Stabilisation Report ## Summary This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised. The feature will allow code like this: ```rust foo(const { 1 + 1 }) ``` which is roughly desugared into ```rust struct Foo; impl Foo { const FOO: i32 = 1 + 1; } foo(Foo::FOO) ``` This feature is from rust-lang/rfcs#2920 and is tracked in rust-lang#76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in rust-lang#77124. ## Difference from RFC There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. rust-lang#89964). The inference is implemented in rust-lang#89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body. This allows code like: ```rust let v: Vec<i32> = const { Vec::new() }; ``` Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in rust-lang#96557. This allows code like: ```rust fn create_none_array<T, const N: usize>() -> [Option<T>; N] { [const { None::<T> }; N] } ``` This enhancement also makes inline const usable as static asserts: ```rust fn require_zst<T>() { const { assert!(std::mem::size_of::<T>() == 0) } } ``` ## Documentation Reference: rust-lang/reference#1295 ## Unresolved issues We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation: * expr fragment specifier issue: rust-lang#86730 * ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~ ## Tests There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
Stabilise inline_const # Stabilisation Report ## Summary This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised. The feature will allow code like this: ```rust foo(const { 1 + 1 }) ``` which is roughly desugared into ```rust struct Foo; impl Foo { const FOO: i32 = 1 + 1; } foo(Foo::FOO) ``` This feature is from rust-lang/rfcs#2920 and is tracked in rust-lang#76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in rust-lang#77124. ## Difference from RFC There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. rust-lang#89964). The inference is implemented in rust-lang#89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body. This allows code like: ```rust let v: Vec<i32> = const { Vec::new() }; ``` Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in rust-lang#96557. This allows code like: ```rust fn create_none_array<T, const N: usize>() -> [Option<T>; N] { [const { None::<T> }; N] } ``` This enhancement also makes inline const usable as static asserts: ```rust fn require_zst<T>() { const { assert!(std::mem::size_of::<T>() == 0) } } ``` ## Documentation Reference: rust-lang/reference#1295 ## Unresolved issues We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation: * expr fragment specifier issue: rust-lang#86730 * ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~ ## Tests There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
Stabilise inline_const # Stabilisation Report ## Summary This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised. The feature will allow code like this: ```rust foo(const { 1 + 1 }) ``` which is roughly desugared into ```rust struct Foo; impl Foo { const FOO: i32 = 1 + 1; } foo(Foo::FOO) ``` This feature is from rust-lang/rfcs#2920 and is tracked in rust-lang#76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in rust-lang#77124. ## Difference from RFC There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. rust-lang#89964). The inference is implemented in rust-lang#89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body. This allows code like: ```rust let v: Vec<i32> = const { Vec::new() }; ``` Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in rust-lang#96557. This allows code like: ```rust fn create_none_array<T, const N: usize>() -> [Option<T>; N] { [const { None::<T> }; N] } ``` This enhancement also makes inline const usable as static asserts: ```rust fn require_zst<T>() { const { assert!(std::mem::size_of::<T>() == 0) } } ``` ## Documentation Reference: rust-lang/reference#1295 ## Unresolved issues We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation: * expr fragment specifier issue: rust-lang#86730 * ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~ ## Tests There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
Stabilise inline_const # Stabilisation Report ## Summary This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised. The feature will allow code like this: ```rust foo(const { 1 + 1 }) ``` which is roughly desugared into ```rust struct Foo; impl Foo { const FOO: i32 = 1 + 1; } foo(Foo::FOO) ``` This feature is from rust-lang/rfcs#2920 and is tracked in rust-lang#76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in rust-lang#77124. ## Difference from RFC There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. rust-lang#89964). The inference is implemented in rust-lang#89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body. This allows code like: ```rust let v: Vec<i32> = const { Vec::new() }; ``` Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in rust-lang#96557. This allows code like: ```rust fn create_none_array<T, const N: usize>() -> [Option<T>; N] { [const { None::<T> }; N] } ``` This enhancement also makes inline const usable as static asserts: ```rust fn require_zst<T>() { const { assert!(std::mem::size_of::<T>() == 0) } } ``` ## Documentation Reference: rust-lang/reference#1295 ## Unresolved issues We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation: * expr fragment specifier issue: rust-lang#86730 * ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~ ## Tests There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
Stabilise inline_const # Stabilisation Report ## Summary This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised. The feature will allow code like this: ```rust foo(const { 1 + 1 }) ``` which is roughly desugared into ```rust struct Foo; impl Foo { const FOO: i32 = 1 + 1; } foo(Foo::FOO) ``` This feature is from rust-lang/rfcs#2920 and is tracked in rust-lang#76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in rust-lang#77124. ## Difference from RFC There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. rust-lang#89964). The inference is implemented in rust-lang#89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body. This allows code like: ```rust let v: Vec<i32> = const { Vec::new() }; ``` Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in rust-lang#96557. This allows code like: ```rust fn create_none_array<T, const N: usize>() -> [Option<T>; N] { [const { None::<T> }; N] } ``` This enhancement also makes inline const usable as static asserts: ```rust fn require_zst<T>() { const { assert!(std::mem::size_of::<T>() == 0) } } ``` ## Documentation Reference: rust-lang/reference#1295 ## Unresolved issues We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation: * expr fragment specifier issue: rust-lang#86730 * ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~ ## Tests There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
Stabilise inline_const # Stabilisation Report ## Summary This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised. The feature will allow code like this: ```rust foo(const { 1 + 1 }) ``` which is roughly desugared into ```rust struct Foo; impl Foo { const FOO: i32 = 1 + 1; } foo(Foo::FOO) ``` This feature is from rust-lang/rfcs#2920 and is tracked in rust-lang#76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in rust-lang#77124. ## Difference from RFC There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. rust-lang#89964). The inference is implemented in rust-lang#89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body. This allows code like: ```rust let v: Vec<i32> = const { Vec::new() }; ``` Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in rust-lang#96557. This allows code like: ```rust fn create_none_array<T, const N: usize>() -> [Option<T>; N] { [const { None::<T> }; N] } ``` This enhancement also makes inline const usable as static asserts: ```rust fn require_zst<T>() { const { assert!(std::mem::size_of::<T>() == 0) } } ``` ## Documentation Reference: rust-lang/reference#1295 ## Unresolved issues We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation: * expr fragment specifier issue: rust-lang#86730 * ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~ ## Tests There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
Can this be closed with #104087? |
@tgross35 patterns are still unstable, so no. |
What are the remaining blockers and other TODO items for inline const patterns? |
one thing i thing this is helpful for: allowing for example, if we want to match against a variant of a certain enum, is it possible to expand to |
Remove `MaybeUninit::uninit_array()` and replace it with inline const blocks. \[This PR originally contained the changes in rust-lang#125995 too. See edit history for the original PR description.] The documentation of `MaybeUninit::uninit_array()` says: > Note: in a future Rust version this method may become unnecessary when Rust allows [inline const expressions](rust-lang#76001). The example below could then use `let mut buf = [const { MaybeUninit::<u8>::uninit() }; 32];`. The PR adding it also said: <rust-lang#65580 (comment)> > if it’s stabilized soon enough maybe it’s not worth having a standard library method that will be replaceable with `let buffer = [MaybeUninit::<T>::uninit(); $N];` That time has come to pass — inline const expressions are stable — so `MaybeUninit::uninit_array()` is now unnecessary. The only remaining question is whether it is an important enough *convenience* to keep it around. I believe it is net good to remove this function, on the principle that it is better to compose two orthogonal features (`MaybeUninit` and array construction) than to have a specific function for the specific combination, now that that is possible.
Rollup merge of rust-lang#125082 - kpreid:const-uninit, r=dtolnay Remove `MaybeUninit::uninit_array()` and replace it with inline const blocks. \[This PR originally contained the changes in rust-lang#125995 too. See edit history for the original PR description.] The documentation of `MaybeUninit::uninit_array()` says: > Note: in a future Rust version this method may become unnecessary when Rust allows [inline const expressions](rust-lang#76001). The example below could then use `let mut buf = [const { MaybeUninit::<u8>::uninit() }; 32];`. The PR adding it also said: <rust-lang#65580 (comment)> > if it’s stabilized soon enough maybe it’s not worth having a standard library method that will be replaceable with `let buffer = [MaybeUninit::<T>::uninit(); $N];` That time has come to pass — inline const expressions are stable — so `MaybeUninit::uninit_array()` is now unnecessary. The only remaining question is whether it is an important enough *convenience* to keep it around. I believe it is net good to remove this function, on the principle that it is better to compose two orthogonal features (`MaybeUninit` and array construction) than to have a specific function for the specific combination, now that that is possible.
I have no clue how this whole "contributing to a major open source project" thing works, however, I'm curious about the progress of this feature. It would make pattern matching with the newtype pattern (namely newtypes that have some invariant that must be upheld) An example would be the But let's say you're working with some format that must only work with ASCII strings, so you pull in the macro_rules! ascii {
($e:expr) => {const {
let x = $e;
match ::ascii::AsciiStr::new_const(x) {
Some(x) => x,
None => panic!("not an ascii string"),
}
}};
}
fn is_keyword(s: &AsciiStr) -> bool {
match s {
ascii!("continue") => true,
ascii!("break") => true,
_ => false,
}
} This is just an example and there are many such cases where something like this would be really useful. |
This is a tracking issue for the RFC "Inline
const
expressions and patterns" (rust-lang/rfcs#2920).Const expressions have been stabilized, but patterns have not
The feature gate for the issue is
#![feature(inline_const_pat)]
.This was originally a tracking issue for const blocks in both expression and pattern position. Inline const expressions have been stabilized in #104087 while patterns are still unstable.
About tracking issues
Tracking issues are used to record the overall progress of implementation.
They are also uses as hubs connecting to other relevant issues, e.g., bugs or open design questions.
A tracking issue is however not meant for large scale discussion, questions, or bug reports about a feature.
Instead, open a dedicated issue for the specific matter and add the relevant feature gate label.
Steps
else
#118859Unresolved Questions
&const { 4 }
vsconst { &4 }
?Implementation history
FnDef
type is disallowed in patterns: DenyFnDef
in patterns #114668The text was updated successfully, but these errors were encountered: