Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add NaNs, infinities and overflows support to sum #12355

Closed
wants to merge 3 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 124 additions & 26 deletions src/libextra/stats.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,7 @@ use std::io;
use std::mem;
use std::num;
use collections::hashmap;

// NB: this can probably be rewritten in terms of num::Num
// to be less f64-specific.
use std::vec_ng::Vec;

fn f64_cmp(x: f64, y: f64) -> Ordering {
// arbitrarily decide that NaNs are larger than everything.
Expand Down Expand Up @@ -167,38 +165,111 @@ impl Summary {
}

impl<'a> Stats for &'a [f64] {

// FIXME #11059 handle NaN, inf and overflow
fn sum(self) -> f64 {
let mut partials : ~[f64] = ~[];

fn samesign(x: f64, y: f64) -> bool {
(x >= 0f64) == (y > 0f64)
}

fn twosum(x: f64, y: f64) -> (f64, f64) {
let hi = x + y;
let lo = y - (hi - x);
(hi, lo)
}

let mut partials = Vec::new();
partials.push(0.0);
let twopow: f64 = num::powf(2.0, (Float::max_exp(None::<f64>) - 1) as f64);
for &mut x in self.iter() {
let mut j = 0;
// This inner loop applies `hi`/`lo` summation to each
// partial so that the list of partial sums remains exact.
for i in range(0, partials.len()) {
let mut y = partials[i];
if num::abs(x) < num::abs(y) {
mem::swap(&mut x, &mut y);
if x.is_nan() {
return x;
} else if x.is_infinite() {
*partials.get_mut(0) += x;
} else {
let mut i = 1;
for z in range(1, partials.len()) {
let mut y = *partials.get(z);
if num::abs(x) < num::abs(y) {
mem::swap(&mut x, &mut y);
}
let (mut hi, mut lo) = twosum(x,y);
if hi.is_infinite() {
let sign = if hi > 0.0 { -1.0 } else { 1.0 };
x = x - twopow * sign - twopow * sign;
*partials.get_mut(0) += sign;
if num::abs(x) < num::abs(y) {
mem::swap(&mut x, &mut y);
}
let (h, l) = twosum(x,y);
hi = h;
lo = l;
}
if lo != 0.0 {
*partials.get_mut(i) = lo;
i += 1;
}
x = hi;
}
// Rounded `x+y` is stored in `hi` with round-off stored in
// `lo`. Together `hi+lo` are exactly equal to `x+y`.
let hi = x + y;
let lo = y - (hi - x);
if lo != 0f64 {
partials[j] = lo;
j += 1;
if i >= partials.len() {
partials.push(x);
} else {
*partials.get_mut(i) = x;
partials.truncate(i + 1);
}
x = hi;
}
if j >= partials.len() {
partials.push(x);
}
// special cases arising from infinities
if partials.get(0).is_infinite() {
return *partials.get(0);
} else if partials.get(0).is_nan() {
fail!("infinities of both signs in summands");
}

let plen = partials.len();
if num::abs(*partials.get(0)) == 1.0 && plen > 1 &&
!samesign(*partials.get(plen - 1), *partials.get(0)) {
let (hi, lo) = twosum(*partials.get(0) * twopow, 0.5 * *partials.get(plen - 1));
if (2.0 * hi).is_infinite() {
if (hi + 2.0 * lo - hi) == (2.0 * lo) && plen > 2 &&
samesign(lo, *partials.get(plen - 2)) {
return 2.0 * (hi + 2.0 * lo);
}
} else {
partials[j] = x;
partials.truncate(j+1);
if lo != 0.0 {
partials.push(2.0 * lo);
}
partials.push(2.0 * hi);
*partials.get_mut(0) = 0.0;
}
}
partials.iter().fold(0.0, |p, q| p + *q)
// if there is no overflow, compute the sum of a list of
// nonoverlapping floats.
if *partials.get(0) == 0.0 {
let mut total_so_far = partials.pop().expect("Impossible empty vector in Stats.sum");
loop {
let item = match partials.pop() {
None => break, //partials is empty, we're finished
Some(x) => x
};
let (total, lo) = twosum(total_so_far, item);
total_so_far = total;
if lo != 0.0 {
partials.push(lo);
break;
}
}

let len = partials.len();
if len >= 2 {
let (a, b) = (*partials.get(len - 1), *partials.get(len-2));
if samesign(a, b) && (total_so_far + 2.0 * a - total_so_far) == (2.0 * a) {
total_so_far += 2.0 * a;
*partials.get_mut(len - 1) = -a;
}
}
return total_so_far;
}
fail!("overflow in stats::sum");
}

fn min(self) -> f64 {
Expand Down Expand Up @@ -442,6 +513,7 @@ mod tests {
use stats::write_boxplot;
use std::io;
use std::str;
use std::f64;

macro_rules! assert_approx_eq(
($a:expr, $b:expr) => ({
Expand Down Expand Up @@ -1022,6 +1094,32 @@ mod tests {
fn test_sum_f64_between_ints_that_sum_to_0() {
assert_eq!([1e30, 1.2, -1e30].sum(), 1.2);
}
#[test]
fn test_sum_infs_and_nans_f64() {
assert_eq!([f64::INFINITY].sum(), f64::INFINITY);
assert_eq!([f64::INFINITY, f64::INFINITY].sum(), f64::INFINITY);

assert!([f64::NAN].sum().is_nan());
assert!([f64::INFINITY, f64::NEG_INFINITY, f64::NAN].sum().is_nan());
}
#[test]
#[should_fail]
fn test_sum_inf_and_neg_inf_f64() {
[f64::INFINITY, f64::NEG_INFINITY].sum();
}
#[test]
fn test_sum_max_value_f64() {
let n = f64::MAX_VALUE;
assert_eq!([n, -n, n].sum(), n);
}
#[test]
#[should_fail]
fn test_sum_overflow_f64() {
let n = f64::MAX_VALUE;
println!("{} ", [n, -n, n, n / 10.0].sum());
println!("{} ", [n, -n, n, 0.1 * n].sum());
error!("n {} ; sum {}", n, [n, -n, n, n / 10.0].sum())
}
}

#[cfg(test)]
Expand Down