Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

std: Document builtin syntax extensions #13255

Merged
merged 1 commit into from
Apr 4, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion mk/docs.mk
Original file line number Diff line number Diff line change
Expand Up @@ -271,7 +271,7 @@ endif
$(2) += doc/$(1)/index.html
doc/$(1)/index.html: $$(LIB_DOC_DEP_$(1))
@$$(call E, rustdoc $$@)
$$(Q)$$(RUSTDOC) --cfg stage2 $$<
$$(Q)$$(RUSTDOC) --cfg dox --cfg stage2 $$<
endef

$(foreach crate,$(DOC_CRATES),$(eval $(call DEF_LIB_DOC,$(crate),DOC_TARGETS)))
Expand Down
2 changes: 1 addition & 1 deletion mk/tests.mk
Original file line number Diff line number Diff line change
Expand Up @@ -694,7 +694,7 @@ endif
ifeq ($(2),$$(CFG_BUILD))
$$(call TEST_OK_FILE,$(1),$(2),$(3),doc-$(4)): $$(DOCTESTDEP_$(1)_$(2)_$(3)_$(4))
@$$(call E, run doc-$(4) [$(2)])
$$(Q)$$(RUSTDOC_$(1)_T_$(2)_H_$(3)) --test $$< --test-args "$$(TESTARGS)" && touch $$@
$$(Q)$$(RUSTDOC_$(1)_T_$(2)_H_$(3)) --cfg dox --test $$< --test-args "$$(TESTARGS)" && touch $$@
else
$$(call TEST_OK_FILE,$(1),$(2),$(3),doc-$(4)):
touch $$@
Expand Down
4 changes: 3 additions & 1 deletion src/librustdoc/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -168,14 +168,16 @@ pub fn main_args(args: &[~str]) -> int {
let markdown_input = input.ends_with(".md") || input.ends_with(".markdown");

let output = matches.opt_str("o").map(|s| Path::new(s));
let cfgs = matches.opt_strs("cfg");

match (should_test, markdown_input) {
(true, true) => {
return markdown::test(input,
libs,
test_args.move_iter().collect())
}
(true, false) => return test::run(input, libs, test_args),
(true, false) => return test::run(input, cfgs.move_iter().collect(),
libs, test_args),

(false, true) => return markdown::render(input, output.unwrap_or(Path::new("doc")),
&matches),
Expand Down
22 changes: 13 additions & 9 deletions src/librustdoc/test.rs
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,10 @@ use rustc::back::link;
use rustc::driver::driver;
use rustc::driver::session;
use rustc::metadata::creader::Loader;
use syntax::ast;
use syntax::codemap::{CodeMap, dummy_spanned};
use syntax::diagnostic;
use syntax::codemap::CodeMap;
use syntax::parse::token;

use core;
use clean;
Expand All @@ -33,7 +35,8 @@ use html::markdown;
use passes;
use visit_ast::RustdocVisitor;

pub fn run(input: &str, libs: HashSet<Path>, mut test_args: Vec<~str>) -> int {
pub fn run(input: &str, cfgs: Vec<~str>,
libs: HashSet<Path>, mut test_args: Vec<~str>) -> int {
let input_path = Path::new(input);
let input = driver::FileInput(input_path.clone());

Expand All @@ -54,7 +57,11 @@ pub fn run(input: &str, libs: HashSet<Path>, mut test_args: Vec<~str>) -> int {
Some(input_path),
span_diagnostic_handler);

let cfg = driver::build_configuration(&sess);
let mut cfg = driver::build_configuration(&sess);
cfg.extend(cfgs.move_iter().map(|cfg_| {
let cfg_ = token::intern_and_get_ident(cfg_);
@dummy_spanned(ast::MetaWord(cfg_))
}));
let krate = driver::phase_1_parse_input(&sess, cfg, &input);
let (krate, _) = driver::phase_2_configure_and_expand(&sess, &mut Loader::new(&sess), krate,
&from_str("rustdoc-test").unwrap());
Expand Down Expand Up @@ -160,17 +167,14 @@ fn runtest(test: &str, cratename: &str, libs: HashSet<Path>, should_fail: bool,

fn maketest(s: &str, cratename: &str, loose_feature_gating: bool) -> ~str {
let mut prog = ~r"
#[deny(warnings)];
#[allow(unused_variable, dead_assignment, unused_mut, attribute_usage, dead_code)];

// FIXME: remove when ~[] disappears from tests.
#[allow(deprecated_owned_vector)];
#![deny(warnings)]
#![allow(unused_variable, dead_assignment, unused_mut, attribute_usage, dead_code)]
";

if loose_feature_gating {
// FIXME #12773: avoid inserting these when the tutorial & manual
// etc. have been updated to not use them so prolifically.
prog.push_str("#[ feature(macro_rules, globs, struct_variant, managed_boxes) ];\n");
prog.push_str("#![feature(macro_rules, globs, struct_variant, managed_boxes) ]\n");
}

if !s.contains("extern crate") {
Expand Down
259 changes: 259 additions & 0 deletions src/libstd/macros.rs
Original file line number Diff line number Diff line change
Expand Up @@ -332,3 +332,262 @@ macro_rules! log (
if log_enabled!($lvl) { println!($($args)*) }
)
)

/// Built-in macros to the compiler itself.
///
/// These macros do not have any corresponding definition with a `macro_rules!`
/// macro, but are documented here. Their implementations can be found hardcoded
/// into libsyntax itself.
#[cfg(dox)]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why not use docs or doc?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I like the name dox, and it's essentially invisible to anyone but those working on libstd.

pub mod builtin {
/// The core macro for formatted string creation & output.
///
/// This macro takes as its first argument a callable expression which will
/// receive as its first argument a value of type `&fmt::Arguments`. This
/// value can be passed to the functions in `std::fmt` for performing useful
/// functions. All other formatting macros (`format!`, `write!`,
/// `println!`, etc) are proxied through this one.
///
/// For more information, see the documentation in `std::fmt`.
///
/// # Example
///
/// ```rust
/// use std::fmt;
///
/// let s = format_args!(fmt::format, "hello {}", "world");
/// assert_eq!(s, format!("hello {}", "world"));
///
/// format_args!(|args| {
/// // pass `args` to another function, etc.
/// }, "hello {}", "world");
/// ```
#[macro_export]
macro_rules! format_args( ($closure:expr, $fmt:expr $($args:tt)*) => ({
/* compiler built-in */
}) )

/// Inspect an environment variable at compile time.
///
/// This macro will expand to the value of the named environment variable at
/// compile time, yielding an expression of type `&'static str`.
///
/// If the environment variable is not defined, then a compilation error
/// will be emitted. To not emit a compile error, use the `option_env!`
/// macro instead.
///
/// # Example
///
/// ```rust
/// let user: &'static str = env!("USER");
/// println!("the user who compiled this code is: {}", user);
/// ```
#[macro_export]
macro_rules! env( ($name:expr) => ({ /* compiler built-in */ }) )

/// Optionally inspect an environment variable at compile time.
///
/// If the named environment variable is present at compile time, this will
/// expand into an expression of type `Option<&'static str>` whose value is
/// `Some` of the value of the environment variable. If the environment
/// variable is not present, then this will expand to `None`.
///
/// A compile time error is never emitted when using this macro regardless
/// of whether the environment variable is present or not.
///
/// # Example
///
/// ```rust
/// let key: Option<&'static str> = option_env!("SECRET_KEY");
/// println!("the secret key might be: {}", key);
/// ```
#[macro_export]
macro_rules! option_env( ($name:expr) => ({ /* compiler built-in */ }) )

/// Concatenate literals into a static byte slice.
///
/// This macro takes any number of comma-separated literal expressions,
/// yielding an expression of type `&'static [u8]` which is the
/// concatenation (left to right) of all the literals in their byte format.
///
/// This extension currently only supports string literals, character
/// literals, and integers less than 256. The byte slice returned is the
/// utf8-encoding of strings and characters.
///
/// # Example
///
/// ```
/// let rust = bytes!("r", 'u', "st");
/// assert_eq!(rust[1], 'u' as u8);
/// ```
#[macro_export]
macro_rules! bytes( ($($e:expr),*) => ({ /* compiler built-in */ }) )

/// Concatenate identifiers into one identifier.
///
/// This macro takes any number of comma-separated identifiers, and
/// concatenates them all into one, yielding an expression which is a new
/// identifier. Note that hygiene makes it such that this macro cannot
/// capture local variables, and macros are only allowed in item,
/// statement or expression position, meaning this macro may be difficult to
/// use in some situations.
///
/// # Example
///
/// ```
/// fn foobar() -> int { 23 }
///
/// let f = concat_idents!(foo, bar);
/// println!("{}", f());
/// ```
#[macro_export]
macro_rules! concat_idents( ($($e:ident),*) => ({ /* compiler built-in */ }) )

/// Concatenates literals into a static string slice.
///
/// This macro takes any number of comma-separated literals, yielding an
/// expression of type `&'static str` which represents all of the literals
/// concatenated left-to-right.
///
/// Integer and floating point literals are stringified in order to be
/// concatenated.
///
/// # Example
///
/// ```
/// let s = concat!("test", 10, 'b', true);
/// assert_eq!(s, "test10btrue");
/// ```
#[macro_export]
macro_rules! concat( ($($e:expr),*) => ({ /* compiler built-in */ }) )

/// A macro which expands to the line number on which it was invoked.
///
/// The expanded expression has type `uint`, and the returned line is not
/// the invocation of the `line!()` macro itself, but rather the first macro
/// invocation leading up to the invocation of the `line!()` macro.
///
/// # Example
///
/// ```
/// let current_line = line!();
/// println!("defined on line: {}", current_line);
/// ```
#[macro_export]
macro_rules! line( () => ({ /* compiler built-in */ }) )

/// A macro which expands to the column number on which it was invoked.
///
/// The expanded expression has type `uint`, and the returned column is not
/// the invocation of the `col!()` macro itself, but rather the first macro
/// invocation leading up to the invocation of the `col!()` macro.
///
/// # Example
///
/// ```
/// let current_col = col!();
/// println!("defined on column: {}", current_col);
/// ```
#[macro_export]
macro_rules! col( () => ({ /* compiler built-in */ }) )

/// A macro which expands to the file name from which it was invoked.
///
/// The expanded expression has type `&'static str`, and the returned file
/// is not the invocation of the `file!()` macro itself, but rather the
/// first macro invocation leading up to the invocation of the `file!()`
/// macro.
///
/// # Example
///
/// ```
/// let this_file = file!();
/// println!("defined in file: {}", this_file);
/// ```
#[macro_export]
macro_rules! file( () => ({ /* compiler built-in */ }) )

/// A macro which stringifies its argument.
///
/// This macro will yield an expression of type `&'static str` which is the
/// stringification of all the tokens passed to the macro. No restrictions
/// are placed on the syntax of the macro invocation itself.
///
/// # Example
///
/// ```
/// let one_plus_one = stringify!(1 + 1);
/// assert_eq!(one_plus_one, "1 + 1");
/// ```
#[macro_export]
macro_rules! stringify( ($t:tt) => ({ /* compiler built-in */ }) )

/// Includes a utf8-encoded file as a string.
///
/// This macro will yield an expression of type `&'static str` which is the
/// contents of the filename specified. The file is located relative to the
/// current file (similarly to how modules are found),
///
/// # Example
///
/// ```rust,ignore
/// let secret_key = include_str!("secret-key.ascii");
/// ```
#[macro_export]
macro_rules! include_str( ($file:expr) => ({ /* compiler built-in */ }) )

/// Includes a file as a byte slice.
///
/// This macro will yield an expression of type `&'static [u8]` which is
/// the contents of the filename specified. The file is located relative to
/// the current file (similarly to how modules are found),
///
/// # Example
///
/// ```rust,ignore
/// let secret_key = include_bin!("secret-key.bin");
/// ```
#[macro_export]
macro_rules! include_bin( ($file:expr) => ({ /* compiler built-in */ }) )

/// Expands to a string that represents the current module path.
///
/// The current module path can be thought of as the hierarchy of modules
/// leading back up to the crate root. The first component of the path
/// returned is the name of the crate currently being compiled.
///
/// # Example
///
/// ```rust
/// mod test {
/// pub fn foo() {
/// assert!(module_path!().ends_with("test"));
/// }
/// }
///
/// test::foo();
/// ```
#[macro_export]
macro_rules! module_path( () => ({ /* compiler built-in */ }) )

/// Boolean evaluation of configuration flags.
///
/// In addition to the `#[cfg]` attribute, this macro is provided to allow
/// boolean expression evaluation of configuration flags. This frequently
/// leads to less duplicated code.
///
/// The syntax given to this macro is the same syntax as the `cfg`
/// attribute.
///
/// # Example
///
/// ```rust
/// let my_directory = if cfg!(windows) {
/// "windows-specific-directory"
/// } else {
/// "unix-directory"
/// };
/// ```
#[macro_export]
macro_rules! cfg( ($cfg:tt) => ({ /* compiler built-in */ }) )
}