Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

stabilized compiler_fences (fixes #41091) #44595

Merged
merged 3 commits into from
Sep 17, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 0 additions & 106 deletions src/doc/unstable-book/src/library-features/compiler-fences.md

This file was deleted.

59 changes: 54 additions & 5 deletions src/libcore/sync/atomic.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1679,10 +1679,14 @@ pub fn fence(order: Ordering) {

/// A compiler memory fence.
///
/// `compiler_fence` does not emit any machine code, but prevents the compiler from re-ordering
/// memory operations across this point. Which reorderings are disallowed is dictated by the given
/// [`Ordering`]. Note that `compiler_fence` does *not* introduce inter-thread memory
/// synchronization; for that, a [`fence`] is needed.
/// `compiler_fence` does not emit any machine code, but restricts the kinds
/// of memory re-ordering the compiler is allowed to do. Specifically, depending on
/// the given [`Ordering`] semantics, the compiler may be disallowed from moving reads
/// or writes from before or after the call to the other side of the call to
/// `compiler_fence`. Note that it does **not** prevent the *hardware*
/// from doing such re-ordering. This is not a problem in a single-threaded,
/// execution context, but when other threads may modify memory at the same
/// time, stronger synchronization primitives such as [`fence`] are required.
///
/// The re-ordering prevented by the different ordering semantics are:
///
Expand All @@ -1691,19 +1695,64 @@ pub fn fence(order: Ordering) {
/// - with [`Acquire`], subsequent reads and writes cannot be moved ahead of preceding reads.
/// - with [`AcqRel`], both of the above rules are enforced.
///
/// `compiler_fence` is generally only useful for preventing a thread from
/// racing *with itself*. That is, if a given thread is executing one piece
/// of code, and is then interrupted, and starts executing code elsewhere
/// (while still in the same thread, and conceptually still on the same
/// core). In traditional programs, this can only occur when a signal
/// handler is registered. In more low-level code, such situations can also
/// arise when handling interrupts, when implementing green threads with
/// pre-emption, etc. Curious readers are encouraged to read the Linux kernel's
/// discussion of [memory barriers].
///
/// # Panics
///
/// Panics if `order` is [`Relaxed`].
///
/// # Examples
///
/// Without `compiler_fence`, the `assert_eq!` in following code
/// is *not* guaranteed to succeed, despite everything happening in a single thread.
/// To see why, remember that the compiler is free to swap the stores to
/// `IMPORTANT_VARIABLE` and `IS_READ` since they are both
/// `Ordering::Relaxed`. If it does, and the signal handler is invoked right
/// after `IS_READY` is updated, then the signal handler will see
/// `IS_READY=1`, but `IMPORTANT_VARIABLE=0`.
/// Using a `compiler_fence` remedies this situation.
///
/// ```
/// use std::sync::atomic::{AtomicBool, AtomicUsize};
/// use std::sync::atomic::{ATOMIC_BOOL_INIT, ATOMIC_USIZE_INIT};
/// use std::sync::atomic::Ordering;
/// use std::sync::atomic::compiler_fence;
///
/// static IMPORTANT_VARIABLE: AtomicUsize = ATOMIC_USIZE_INIT;
/// static IS_READY: AtomicBool = ATOMIC_BOOL_INIT;
///
/// fn main() {
/// IMPORTANT_VARIABLE.store(42, Ordering::Relaxed);
/// // prevent earlier writes from being moved beyond this point
/// compiler_fence(Ordering::Release);
/// IS_READY.store(true, Ordering::Relaxed);
/// }
///
/// fn signal_handler() {
/// if IS_READY.load(Ordering::Relaxed) {
/// assert_eq!(IMPORTANT_VARIABLE.load(Ordering::Relaxed), 42);
/// }
/// }
/// ```
///
/// [`fence`]: fn.fence.html
/// [`Ordering`]: enum.Ordering.html
/// [`Acquire`]: enum.Ordering.html#variant.Acquire
/// [`SeqCst`]: enum.Ordering.html#variant.SeqCst
/// [`Release`]: enum.Ordering.html#variant.Release
/// [`AcqRel`]: enum.Ordering.html#variant.AcqRel
/// [`Relaxed`]: enum.Ordering.html#variant.Relaxed
/// [memory barriers]: https://www.kernel.org/doc/Documentation/memory-barriers.txt
#[inline]
#[unstable(feature = "compiler_fences", issue = "41091")]
#[stable(feature = "compiler_fences", since = "1.22.0")]
pub fn compiler_fence(order: Ordering) {
unsafe {
match order {
Expand Down