Skip to content

review the total_cmp documentation #93403

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 31, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 27 additions & 19 deletions library/core/src/num/f32.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1008,29 +1008,37 @@ impl f32 {
Self::from_bits(u32::from_ne_bytes(bytes))
}

/// Returns an ordering between self and other values.
/// Return the ordering between `self` and `other`.
///
/// Unlike the standard partial comparison between floating point numbers,
/// this comparison always produces an ordering in accordance to
/// the totalOrder predicate as defined in IEEE 754 (2008 revision)
/// floating point standard. The values are ordered in following order:
/// - Negative quiet NaN
/// - Negative signaling NaN
/// - Negative infinity
/// - Negative numbers
/// - Negative subnormal numbers
/// - Negative zero
/// - Positive zero
/// - Positive subnormal numbers
/// - Positive numbers
/// - Positive infinity
/// - Positive signaling NaN
/// - Positive quiet NaN
///
/// Note that this function does not always agree with the [`PartialOrd`]
/// and [`PartialEq`] implementations of `f32`. In particular, they regard
/// negative and positive zero as equal, while `total_cmp` doesn't.
/// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
/// floating point standard. The values are ordered in the following sequence:
///
/// - negative quiet NaN
/// - negative signaling NaN
/// - negative infinity
/// - negative numbers
/// - negative subnormal numbers
/// - negative zero
/// - positive zero
/// - positive subnormal numbers
/// - positive numbers
/// - positive infinity
/// - positive signaling NaN
/// - positive quiet NaN.
///
/// The ordering established by this function does not always agree with the
/// [`PartialOrd`] and [`PartialEq`] implementations of `f32`. For example,
/// they consider negative and positive zero equal, while `total_cmp`
/// doesn't.
///
/// The interpretation of the signaling NaN bit follows the definition in
/// the IEEE 754 standard, which may not match the interpretation by some of
/// the older, non-conformant (e.g. MIPS) hardware implementations.
///
/// # Example
///
/// ```
/// #![feature(total_cmp)]
/// struct GoodBoy {
Expand Down
46 changes: 27 additions & 19 deletions library/core/src/num/f64.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1024,29 +1024,37 @@ impl f64 {
Self::from_bits(u64::from_ne_bytes(bytes))
}

/// Returns an ordering between self and other values.
/// Return the ordering between `self` and `other`.
///
/// Unlike the standard partial comparison between floating point numbers,
/// this comparison always produces an ordering in accordance to
/// the totalOrder predicate as defined in IEEE 754 (2008 revision)
/// floating point standard. The values are ordered in following order:
/// - Negative quiet NaN
/// - Negative signaling NaN
/// - Negative infinity
/// - Negative numbers
/// - Negative subnormal numbers
/// - Negative zero
/// - Positive zero
/// - Positive subnormal numbers
/// - Positive numbers
/// - Positive infinity
/// - Positive signaling NaN
/// - Positive quiet NaN
///
/// Note that this function does not always agree with the [`PartialOrd`]
/// and [`PartialEq`] implementations of `f64`. In particular, they regard
/// negative and positive zero as equal, while `total_cmp` doesn't.
/// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
/// floating point standard. The values are ordered in the following sequence:
///
/// - negative quiet NaN
/// - negative signaling NaN
/// - negative infinity
/// - negative numbers
/// - negative subnormal numbers
/// - negative zero
/// - positive zero
/// - positive subnormal numbers
/// - positive numbers
/// - positive infinity
/// - positive signaling NaN
/// - positive quiet NaN.
///
/// The ordering established by this function does not always agree with the
/// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
/// they consider negative and positive zero equal, while `total_cmp`
/// doesn't.
///
/// The interpretation of the signaling NaN bit follows the definition in
/// the IEEE 754 standard, which may not match the interpretation by some of
/// the older, non-conformant (e.g. MIPS) hardware implementations.
///
/// # Example
///
/// ```
/// #![feature(total_cmp)]
/// struct GoodBoy {
Expand Down