-
-
Notifications
You must be signed in to change notification settings - Fork 436
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add KS tests for weighted sampling; use A-ExpJ alg with log-keys (#1530)
- Extra testing for weighted sampling - Fix IndexedRandom::choose_multiple_weighted with very small keys - Use A-ExpJ algorithm with BinaryHeap for better performance with large length / amount
- Loading branch information
Showing
4 changed files
with
277 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,235 @@ | ||
// Copyright 2024 Developers of the Rand project. | ||
// | ||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | ||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license | ||
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your | ||
// option. This file may not be copied, modified, or distributed | ||
// except according to those terms. | ||
|
||
mod ks; | ||
use ks::test_discrete; | ||
use rand::distr::{Distribution, WeightedIndex}; | ||
use rand::seq::{IndexedRandom, IteratorRandom}; | ||
use rand_distr::{WeightedAliasIndex, WeightedTreeIndex}; | ||
|
||
/// Takes the unnormalized pdf and creates the cdf of a discrete distribution | ||
fn make_cdf(num: usize, f: impl Fn(i64) -> f64) -> impl Fn(i64) -> f64 { | ||
let mut cdf = Vec::with_capacity(num); | ||
let mut ac = 0.0; | ||
for i in 0..num { | ||
ac += f(i as i64); | ||
cdf.push(ac); | ||
} | ||
|
||
let frac = 1.0 / ac; | ||
for x in &mut cdf { | ||
*x *= frac; | ||
} | ||
|
||
move |i| { | ||
if i < 0 { | ||
0.0 | ||
} else { | ||
cdf[i as usize] | ||
} | ||
} | ||
} | ||
|
||
#[test] | ||
fn weighted_index() { | ||
fn test_weights(num: usize, weight: impl Fn(i64) -> f64) { | ||
let distr = WeightedIndex::new((0..num).map(|i| weight(i as i64))).unwrap(); | ||
test_discrete(0, distr, make_cdf(num, weight)); | ||
} | ||
|
||
test_weights(100, |_| 1.0); | ||
test_weights(100, |i| ((i + 1) as f64).ln()); | ||
test_weights(100, |i| i as f64); | ||
test_weights(100, |i| (i as f64).powi(3)); | ||
test_weights(100, |i| 1.0 / ((i + 1) as f64)); | ||
} | ||
|
||
#[test] | ||
fn weighted_alias_index() { | ||
fn test_weights(num: usize, weight: impl Fn(i64) -> f64) { | ||
let weights = (0..num).map(|i| weight(i as i64)).collect(); | ||
let distr = WeightedAliasIndex::new(weights).unwrap(); | ||
test_discrete(0, distr, make_cdf(num, weight)); | ||
} | ||
|
||
test_weights(100, |_| 1.0); | ||
test_weights(100, |i| ((i + 1) as f64).ln()); | ||
test_weights(100, |i| i as f64); | ||
test_weights(100, |i| (i as f64).powi(3)); | ||
test_weights(100, |i| 1.0 / ((i + 1) as f64)); | ||
} | ||
|
||
#[test] | ||
fn weighted_tree_index() { | ||
fn test_weights(num: usize, weight: impl Fn(i64) -> f64) { | ||
let distr = WeightedTreeIndex::new((0..num).map(|i| weight(i as i64))).unwrap(); | ||
test_discrete(0, distr, make_cdf(num, weight)); | ||
} | ||
|
||
test_weights(100, |_| 1.0); | ||
test_weights(100, |i| ((i + 1) as f64).ln()); | ||
test_weights(100, |i| i as f64); | ||
test_weights(100, |i| (i as f64).powi(3)); | ||
test_weights(100, |i| 1.0 / ((i + 1) as f64)); | ||
} | ||
|
||
#[test] | ||
fn choose_weighted_indexed() { | ||
struct Adapter<F: Fn(i64) -> f64>(Vec<i64>, F); | ||
impl<F: Fn(i64) -> f64> Distribution<i64> for Adapter<F> { | ||
fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> i64 { | ||
*IndexedRandom::choose_weighted(&self.0[..], rng, |i| (self.1)(*i)).unwrap() | ||
} | ||
} | ||
|
||
fn test_weights(num: usize, weight: impl Fn(i64) -> f64) { | ||
let distr = Adapter((0..num).map(|i| i as i64).collect(), &weight); | ||
test_discrete(0, distr, make_cdf(num, &weight)); | ||
} | ||
|
||
test_weights(100, |_| 1.0); | ||
test_weights(100, |i| ((i + 1) as f64).ln()); | ||
test_weights(100, |i| i as f64); | ||
test_weights(100, |i| (i as f64).powi(3)); | ||
test_weights(100, |i| 1.0 / ((i + 1) as f64)); | ||
} | ||
|
||
#[test] | ||
fn choose_one_weighted_indexed() { | ||
struct Adapter<F: Fn(i64) -> f64>(Vec<i64>, F); | ||
impl<F: Fn(i64) -> f64> Distribution<i64> for Adapter<F> { | ||
fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> i64 { | ||
*IndexedRandom::choose_multiple_weighted(&self.0[..], rng, 1, |i| (self.1)(*i)) | ||
.unwrap() | ||
.next() | ||
.unwrap() | ||
} | ||
} | ||
|
||
fn test_weights(num: usize, weight: impl Fn(i64) -> f64) { | ||
let distr = Adapter((0..num).map(|i| i as i64).collect(), &weight); | ||
test_discrete(0, distr, make_cdf(num, &weight)); | ||
} | ||
|
||
test_weights(100, |_| 1.0); | ||
test_weights(100, |i| ((i + 1) as f64).ln()); | ||
test_weights(100, |i| i as f64); | ||
test_weights(100, |i| (i as f64).powi(3)); | ||
test_weights(100, |i| 1.0 / ((i + 1) as f64)); | ||
} | ||
|
||
#[test] | ||
fn choose_two_weighted_indexed() { | ||
struct Adapter<F: Fn(i64) -> f64>(Vec<i64>, F); | ||
impl<F: Fn(i64) -> f64> Distribution<i64> for Adapter<F> { | ||
fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> i64 { | ||
let mut iter = | ||
IndexedRandom::choose_multiple_weighted(&self.0[..], rng, 2, |i| (self.1)(*i)) | ||
.unwrap(); | ||
let mut a = *iter.next().unwrap(); | ||
let mut b = *iter.next().unwrap(); | ||
assert!(iter.next().is_none()); | ||
if b < a { | ||
std::mem::swap(&mut a, &mut b); | ||
} | ||
a * self.0.len() as i64 + b | ||
} | ||
} | ||
|
||
fn test_weights(num: usize, weight: impl Fn(i64) -> f64) { | ||
let distr = Adapter((0..num).map(|i| i as i64).collect(), &weight); | ||
|
||
let pmf1 = (0..num).map(|i| weight(i as i64)).collect::<Vec<f64>>(); | ||
let sum: f64 = pmf1.iter().sum(); | ||
let frac = 1.0 / sum; | ||
|
||
let mut ac = 0.0; | ||
let mut cdf = Vec::with_capacity(num * num); | ||
for a in 0..num { | ||
for b in 0..num { | ||
if a < b { | ||
let pa = pmf1[a] * frac; | ||
let pab = pa * pmf1[b] / (sum - pmf1[a]); | ||
|
||
let pb = pmf1[b] * frac; | ||
let pba = pb * pmf1[a] / (sum - pmf1[b]); | ||
|
||
ac += pab + pba; | ||
} | ||
cdf.push(ac); | ||
} | ||
} | ||
assert!((cdf.last().unwrap() - 1.0).abs() < 1e-9); | ||
|
||
let cdf = |i| { | ||
if i < 0 { | ||
0.0 | ||
} else { | ||
cdf[i as usize] | ||
} | ||
}; | ||
|
||
test_discrete(0, distr, cdf); | ||
} | ||
|
||
test_weights(100, |_| 1.0); | ||
test_weights(100, |i| ((i + 1) as f64).ln()); | ||
test_weights(100, |i| i as f64); | ||
test_weights(100, |i| (i as f64).powi(3)); | ||
test_weights(100, |i| 1.0 / ((i + 1) as f64)); | ||
test_weights(10, |i| ((i + 1) as f64).powi(-8)); | ||
} | ||
|
||
#[test] | ||
fn choose_iterator() { | ||
struct Adapter<I>(I); | ||
impl<I: Clone + Iterator<Item = i64>> Distribution<i64> for Adapter<I> { | ||
fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> i64 { | ||
IteratorRandom::choose(self.0.clone(), rng).unwrap() | ||
} | ||
} | ||
|
||
let distr = Adapter((0..100).map(|i| i as i64)); | ||
test_discrete(0, distr, make_cdf(100, |_| 1.0)); | ||
} | ||
|
||
#[test] | ||
fn choose_stable_iterator() { | ||
struct Adapter<I>(I); | ||
impl<I: Clone + Iterator<Item = i64>> Distribution<i64> for Adapter<I> { | ||
fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> i64 { | ||
IteratorRandom::choose_stable(self.0.clone(), rng).unwrap() | ||
} | ||
} | ||
|
||
let distr = Adapter((0..100).map(|i| i as i64)); | ||
test_discrete(0, distr, make_cdf(100, |_| 1.0)); | ||
} | ||
|
||
#[test] | ||
fn choose_two_iterator() { | ||
struct Adapter<I>(I); | ||
impl<I: Clone + Iterator<Item = i64>> Distribution<i64> for Adapter<I> { | ||
fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> i64 { | ||
let mut buf = [0; 2]; | ||
IteratorRandom::choose_multiple_fill(self.0.clone(), rng, &mut buf); | ||
buf.sort_unstable(); | ||
assert!(buf[0] < 99 && buf[1] >= 1); | ||
let a = buf[0]; | ||
4950 - (99 - a) * (100 - a) / 2 + buf[1] - a - 1 | ||
} | ||
} | ||
|
||
let distr = Adapter((0..100).map(|i| i as i64)); | ||
|
||
test_discrete( | ||
0, | ||
distr, | ||
|i| if i < 0 { 0.0 } else { (i + 1) as f64 / 4950.0 }, | ||
); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters